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Simplification of Nonlinear Indicial Response Models:
Assessment for the Two-Dimensional Airfoil Case

Jerry E. Jenkins*
Wright Research and Development Center, Wright-Patterson Air Force Base, Ohio 45433

Simplifications to the functional form of the nonlinear indicial response model and application to the aero-
dynamic response due to arbitrary motion inputs are discussed. Numerical results for a thin two-dimensional airfoil
with wake distortion nonlinearities are used to control and justify the assumptions employed. Useful relationships
between indicial response parameters and steady-state oscillatory force and moment data are obtained by
representing the indicial response with a Taylor series (in terms of onset motion parameters) and approximating
the superposition integral with an asymptotic expansion. In particular, the appearance of certain harmonics and
their variation with frequency, amplitude, and mean angle of attack are traced to specific onset parameters. A
nonlinear parameter identification procedure is proposed by which active onset parameters may be determined from -
experimental data. Restrictions imposed by using the asymptotic expansion are also examined. Nonlinear stability
derivatives are-shown to be related to specific indicial response characteristics.

Nomenclature

A = amplitude of harmonic oscillation in «, rad

CL = section lift coefficient, lift/gc

C,,. =apparent mass derivative, l/rad

L, = mean section lift coefficient for oscillatory motion
L = nonlinear indicial response; section lift due to «

¢ = chord length, ft

F = deficiency function, difference between steady-state
and transient indicial responses, 1/rad

F, = linear deficiency function evaluated at « =0, 1/rad

F, = nonlinear deficiency function, 62F/6a? evaluated
at a =0, l/rad?

<o = superposition integral linear onset parameter, =&

g2 = superposition integral nonlinear onset parameter,
=’

k = reduced frequency, =wc/2U,

q = dynamic pressure, psf

R, = remainder after n terms of partial sum

t = time, nondimensionalized by 2U, /¢

U,  =freestream velocity, ft/s

x = angle of attack, rad

2.4 = first and second derivatives of « with respect to ¢,
rad

% = mean angle of attack for harmonic motion, rad

T = nondimensional time at step onset

o = elapsed nondimensional time from onset, =t —t

© = circular frequency, rad/s

Introduction

ARGE-AMPLITUDE oscillatory force and moment data

typically exhibit nonlinear dependencies on amplitude
and frequency. Often these effects can be attributed to hys-
teresis; sometimes “'simple” nonlinear variations in either (or
both) static or dynamic force and moment data are the cause.
In either case, aerodynamic response modeling for flight
mechanics analyses is a difficult problem.
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Atmosphere Flight Mechanics Conference, Boston, MA, Aug. 14-16, -

1989; revision received June 8, 1990; accepted for publication June 8,
1990. This paper is declared a work of the U.S. Government and is not
subject to copyright protection in the United States.
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The current work focuses on establishing relationships be-
tween steady-state oscillatory force and moment data and

models capable of accounting for some of these nonlinear -

effects. Limits of applicability for these models is also ex-
plored. The basis for this study is nonlinear aerodynamic
modeling work reported by Tobak and Chapman' and Tobak

"and Schiff.?

The modeling concepts apply equally well to any of the six
force and moment components and to any motion input,
including control deflection; however, lift response due to
angle of attack is used throughout to illustrate the concepts.

Nonlinear Indicial Responses
The nonlinear indicial response is the most generally appli-
cable modeling concept. It is defined in terms of two motions
as shown in the following sketch:

«
x,
Ax
/__/_T
-] x(£)
T t
C
L CLz
A CL‘
T t

where «(¢) is the *‘reference motion,” defined for —co < ¢ < 1;
a, consists of a(¢), for ¢t < 7, and is held constant at a(t) for
t>1; and a, consists of a(f), for ¢ < t, but jumps instanta-
neously to a(r) + Ax for ¢ >r. The nonlinear indicial lift
response is the limit, as step height A« approaches zero, of the
difference between the corresponding lift time histories.
Evidence supporting the need for such a definition is given
in Figs. 1-3, taken from Graham's® tow-tank experiments
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Fig. 2 Lift time history.

using @ NACA 0013 airfoil. The point is that motion history
cffects can have a profound intluence on the resulting flow-
ficlds. even when there are identical onset conditions. In fact.
history etfects are completely reflected in the wake structure.

Consider two angle-ot-attack time historics. as shown in
Fig. 1. which are interpreted as two distinet reference mo-
tions. (Graham? investigated “poststall maneuvers™ that re-
turned to zero angle of attack after holding at high
however, the point is better illustrated by examining only a
portion of the complete motion.) Flowfields at the termina-
tion of each maneuver (x =90 deg) are shown in Figs. 3. The
How is left to right and the view is spanwise from the root,
slightly above and behind the wing section. Thus. only the
upper surface of the wing section is visible: the leading edge is
to the top of the picture. For the rapid pitch-up {alpha
dot = 0.7). the “dynamic stall”™ vortex is less difuse. more
tightly wrapped, and closer to the airfoil upper surface than
for alpha dot=0.2. Note also that at alpha dot =0.7 the
starting vortex associated with the onset of the pitch-up
motion (lower right) has not had time to be swept down-
stream and can still exert an appreciable influence on airfoil
response. Furthermore. if x is held constant at this point.
these distinetly different vortex systems will also exhibit
unique diffusion and convection properties. Correspondingly
large differences in lift are observed (Fig. 2). Clearly. motion
history effects can be important. Theretore, the referenc
motion is required to establish appropriate tlow conditions
from which to measure the corresponding indicial response.
The z- motion then establishes the change in response due to a
small perturbation in x.

<

As shown by Tobak and Chapman.' the dependence of
n r

nonlinear indicial responses on reference motion requires that
thev be expressed mathematically as a functional. te..

C,[z(0)) = C 2 (0
CL,[i(s:):[.fleliﬂl 2:0)] Ll ()

x =) Ax

Fig. 3a  Flow visualization, alpha dot=10.2.

Fig. 3b Flow visualization, alpha dot = 0.7.

where the step onset is at ¢ = 7. The functional dependency on
prior motion x(Z) distinguishes the nonlinear indicial response
from its linear counterpart.

Equation (1) defines the Fréchet derivative of the func-
tional C,[x,(n)]. as noted by Tobak and Chapman.! They also
suggest that bifurcations of physically realizable (asymptot-
icallv stable to small perturbations) steady-state solutions
corresponding to z, are signaled by loss ot Fréechet differen-
tiability. Such occurrences are of considerable interest to the
study of hysteresis effects.

Possible simplifications to the functional representation for
indicial responses have heen suggssted by Tobak and Schiff.s
Suppose that the motion x(2) is analvtic (in the strict mathe-
matical sense) over the interval — 2 < ¢ < 7. In this case. 2(])
may be replaced by its Tavlor series expansion about [ =<,
Therefore.

Co (23] = Cp [rmmniz). 2] (2

where the independent variables x(z).%(x).4(7).... are the co-
2riicients of the Tavlor expansion. On physical grounds. the
distant past is expected to be less important to the step
response than motion characteristics just prior to onsct, sug-
gesting. perhaps. that only a few Taylor series coetlicients
need to be retained.

Simplifications based on unsteady aerodynamic characteris-
tics for thin two-dimensional airfoils in an inviscid and incom-
pressible fluid are studied in the following section. This
approach aflows the nonlinear indicial response model to be
examined in a context where assumptions may be controlled
and justified. However, results reported herein are not appli-
cable to the extreme conditions evident in the example just
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presented. Notably large-scale separated flows with corre-
sponding time-dependent equilibrium states are excluded.

Nonlinear thin-airfoil characteristics were obtained by us-
ing NLWAKE, a computer code developed by Scott and
McCune.* NLWAKE provides numerical solutions for a non-
linear version of Wagner’s integral equation, which relates the
quasisteady bound vorticity to wake vorticity. To do this, the
shed vorticity is discretized and the wake allowed to distort
under the influence of both bound vorticity and other wake
elements. Since NLWAKE disallows separation, only nonlin-
ear wake distortion effects are included. NLWAKE cannot be
used to investigate hysteresis effects.

Two-Dimensional Airfoil with Wake Distortion

Nonlinear step responses computed with NLWAKE are
shown in Figs. 4 and 5. The required Fréchet derivatives were
computed numerically based on positive and negative step
heights of 0.1deg. Figure 4 shows indicial responses for
constant angle of attack prior to onset. In Fig. 5, a(¢) is
ramped at constant rate (positive and negative) to the same
onset « values. Motion history effects caused by wake distor-
tion have an appreciable influence on the indicial response.
However, history effects predicted by NLWAKE correlate
very well with onset angle of attack; onset rate having a
negligible influence up to quite large values. Thus, for the
two-dimensional airfoil in the absence of separation, indicial
response functionals may be adequately approximated by a
function only of «(r) and elapsed time from onset ¢ — t. This
approximation is used in the following development although
separation effects are probably important at lower onset rates
than shown in Fig. 5. .

NLWAKE cannot predict nonlinearities in the static lift-
curve slope. However, for completeness, this possibility is
included, although coupling between quasisteady characteris-
tics and indicial response time history cannot be explored.
Also, there are situations (e.g., following a Hopf bifurcation)

4.0 DEG STEADY-STATE
0644 0 ee-e- 0.0 DEG STEADY-STATE
[ TAYLOR REPRESENTATION

0.5 T T T T T T T
0 2 4 6 8 10 12 14
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Fig. 4 Onset angle-of-attack effect on step response.
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Fig. 5 Onset rate effect on indicial response.
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where the response is time dependent even in the limit as
elapsed time (since step initiation) approaches infinity, How-
ever, a steady-state condition is assumed to exist. In these
cases, it is convenient to introduce the “deficiency func-
tion” F:

Fla(t)t =] = Cy,[o(7),00] — Cp [a(z),t — 1]

where the first term on the right side is the steady-state
lift-curve slope,

Cp [x(t),00] = _lim Cp lo(v),r — 1]

and the indicial response is expressed as a function of onset
angle of attack and elapsed time as suggested above. Thus Eq.
(2) becomes

Cp )it = 1] =~ Cy [a(2),t = 7]
= Cp [2(2),90] — Fla(2),1 — 1] (3)

In addition, for uncambered airfoils (consistent with
NLWAKE restrictions), both the deficiency function and
static lift-curve slope are even functions of a. Furthermore,
except for possible bifurcation points, both terms on the right
side of Eq. (3) are expected to be analytic. Thus, expanding
them in Taylor series about zero of angle of attack, retaining
only even powers of alpha, Eq. (3) becomes

Cr [t = 1] = Cp [a(e).t ~ 7]

=C,.,(0,0) +0.5 ;&% [CL,(0,00)]2*(7) + -

— Fo(0, — 1) — 0.5F,(0,¢ — 7)o () + - 4)
where
Fo(0,t — 1) = Fla(t),t — T]!J(f)=0
and
az
Fy(00t = ) = = {Fla(@),t = o mo

C.(0,c0) and F,(0,r —1) are the classical linear terms be-
cause they are independent of onset conditions. Note that if
additional onset parameters are included, multivariate Taylor
series will be required and mixed partial derivatives will
appear. v

F, was computed from NLWAKE step responses at steady-
state onset conditions of +1.0deg and is shown in Fig. 6.
Figure 4 shows the comparison between steps initiated at
4.0-deg alpha as calculated directly from NLWAKE and as

w
z
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Fig. 6 Alpha-squared contribution to step response.
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given by Eq. (4), dropping all terms higher than second order
and retaining only the linear lift-curve slope. This is nearly an
exact representation, and higher-order terms are not needed.

When Eq. (4) is used to construct lift responses to arbitrary
inputs, as discussed in the following section, various integrals
of Fy and F, will be required. To this end, it is useful to have
analytical models for each. Exponential approximations for
the two-dimensional airfoil linear deficiency function abound
in the literature. Jones’ expression, as given by Fung,® is used
herein. An exponential approximation for F,, based on a
least-squares fit to NLWAKE data, is shown in Fig. 6. These
approximations are of the form:

Fy~ae " +(n —a,)e " (5a)
Fyxby(1 —e~bm)ebm (5b)
where al = 1.037 (1/rad), a, = 0.0455, a, = 0.300, b, = — 148.3

(1/rad?), b, = 24.9, and b3—0254

Equatlon (4) is the nonlinear indicial response form used
throughout the remainder of the paper; principal limitations
on its use are the following:

1) Reference motions must be analytic. Indicial response
functionals can then be represented as functions of onset
motion parameters.

2) The indicial responses are assumed to approach a
steady-state condition as elapsed time since onset becomes
large.

3) In quantitative results, terms above second order in «
have been neglected based on comparisons with NLWAKE
output (see Fig. 4). This has been justified only for attached-
flow conditions and results are implicitly restricted to a rela-
tively small angle-of-attack range.

4) The deficiency function and the static lift-curve slope
have been expanded in Taylor series about alpha=0 and a
symmetric airfoil is considered; only even terms are retained.
This leads to a simpler presentation and clearly shows that the
classical linear theory is contained as a special case. Both
terms can be expanded about nonzero values of alpha, if

desired.

Response to Arbitrary Motion

‘Superposition Integral

As shown by Tobak and Chapman,' responses to arbitrary
motion inputs can be calculated by using a generalized super-
posmon integral. If a bifurcation in the steady-state response
occirs at ¢ = t,, the integral has the form

C () = C[r,a(0)] + lim {J- B Cp,[2(8) 7] 9 dt
] o dT

+f’ Cp [2(0); tr] d‘L’ +AC, (1,2, )} (6)

where

AC () = Cpla(@)itr, + ) — CrlaE)itr, — ]

Thus, the superposition integral is split to allow the solu-
tion to change discretely to a new equilibrium state (and to
avoid the singularity). Since NLWAKE cannot support an
investigation of hysteresis effects, it is assumed that no bifur-
cations take place over the time interval 0 to . In this case,
integration can proceed directly from 1 =0 to 7 =t and
ACL = 0.

Simplified Forms
Approximating the nonlinear functional by Eq. (4) (drop-

ping terms above second order) and changing the variable of
integration to elapsed time from onset t,=t—71, Eq. (6)

J. E. JENKINS

s

J. AIRCRAFT

becomes

Co(n) = C[t.2(0)] + Cp (0,0c)a(r) — 2(0)]
23(r) — 2°(0)

Loy 6 —f FO(Ovrl)gO(l'—rl) dfl
0

-05 J’ Fy(0,7))g.(t — 1,) dr, N
0

where

1 =35 (CLO00), go=4 g:=ak

= Ga

If Eq. (7) is used for dynamic analyses, the equations of
motion become integro-differential equations because g, and
&~ appear under the integrals. Further simplification would be
needed to avoid this complication. For linear systems, Etkin®
proposed using “‘aerodynamic transfer functions” in conjunc-
tion with the Laplace transform of the equations of motion.
One possible approach to the nonlinear problem is to repre-
sent Eq. (7) in the frequency domain by using higher-order
Laplace transforms and George's association of variables
technique (see Ref. 7). There would be, then, a potentially
manageable algebraic problem with advantages similar to
Etkin’s linear system approach.

The objective here is limited to developing relationships
between indicial response parameters and the response to
arbitrary, but prescribed, motion. To this end, the integrals

J Fi{t))gi(t = 1) dry; i=0.2
0

may be integrated recursively by parts to give

J' Fi(t)gi(t — 7)) dr, = g, (0) (1) — g, ()], (0)

n—1

d
+&:(02(0) - & (D12(0) + - — 3= &1 (0) + Ry,

(8a)
where
10 =J f Fy(x,) de, - dr, (8b)
1.(0)= J’ J-E(r,)dr, - dr, (8¢)
n times =0

¢ d
R, =J Im(fx); lg:(+ ~ 7))} dr, (8d)

o t

Differentiability of g, and g, imposes no new restrictions since
Eq. (2) requires a(f) to have derivatives of all orders.

Finally, a series representation for the lift response to an
arbitrary, but specified, motion input (in the absence of
bifurcation) is given by substituting Eq. (8a) back into Eq.
(7N:

2’()
6

+§0(m(0>[ <r)} Ml(r)[ ((»}
+0-5{n+1(0)[dg~ } H,(r)[%w)]}) ©)

where a steady-state initial condition has been assumed and

Cp=Cp,,d(0) + Cp (0,00)a(t) + Cp,

I, =1, and J, =1,
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Note that an apparent mass term C, () must be in-
cluded to account for the noncirculatory part of the lift
response. The incompressible apparent mass reaction is in-
stantaneous; therefore, the indicial response requires an im-
pulse at step onset. Neither F, nor F, includes the impulse.
However, it can be included as a Dirac delta function embed-
ded in the indicial response representation.® Subsequent inte-
gration across the delta function produces an apparent mass
term proportional to the instantaneous value of alpha dot. In
the linear compressible case, Leishman® gives exponential
models for the noncirculatory terms.

Note also on the right side of Eq. (9) the top line (apparent
mass excluded) gives the quasisteady response. The last two
lines account for the transition from the initial quasisteady
state to the steady-state condition; i.e., I,(¢) and J,(¢) describe
the transient response and vanish for large 1. I,(0) and J,(0)
provide the dynamic response.

If a bifurcation in possible steady-state solutions occurs
inside the time interval, the superposition integral must be
split in accordance with Eq (6). The integration procedure
outlined earlier remains valid; the impact will be felt in two
ways. First. by definition. static lift-curve slope terms will
differ on each side of the bifurcation (corresponding changes
in the deficiency functions are expected). Second, because t,
appears in the limits of integration (and in AC,), terms like
gi(t — 1)1, (z,.) will appear. Since, for arbitrary motion, 1, is
not known a priori, the time-domain solution becomes awk-
ward for flight mechanists. Aerodynamic reaction models, as
proposed by Hanff,!® avoid this difficulty.

Properties of the Series Representation .

Equation (9) has the distinct advantage of separating mo-
tion variables from indicial function characteristics. More
specifically, the integrals are now independent of motion
input; i.e., only multiple integrals of F, and F, are required.
This property leads directly to the desired relationships be-
tween specific indicial response onset parameters, stability
derivatives, and steady-state response to oscillatory motion
inputs. However, simplification has been obtained at the cost
of generality. Properties of both series (linear effects given in
terms of I, and nonlinear effects given in terms of J,) are
examined later.

First, a special word of caution is in order. It may be
tempting to use Eq. (9), retaining higher-order terms to
improve accuracy, directly in dynamic analyses. Even in the
linear case, this can lead to disastrously false results. The
reason is that expansion of the integrals alters the nature of
the characteristic equation, changing it from transcendental to
polynomial. Each additional term contains higher-order time
derivatives and therefore increases the polynomial’s degree.
Inevitably, extraneous roots are introduced. Spurious roots
can occur in awkward places (well into the right-half plane,
for example) even if the approximation is quite good within
the radius of convergence. For a discussion of this problem
see Ref. 11 and the references cited therein. To reiterate, Eq.
(9) is introduced simply as an analytical tool for studying
relationships among indicial response characteristics and re-
sponses to prescribed motions such as those encountered in
wind-tunnel testing.

Both series in Eq. (9) are asymptotic expansions [of the left
side of Eq. (8a)] with respect to sequences defined by taking
successive time derivatives of g, and g,. This implies that they
are valid for “sufficiently slow” motions, as will be shown for
the special case of harmonic oscillations about a constant
mean angle of attack. The motion also has an arbitrary phase
angle relative to a reference signal:

a(t) = 29+ A cos(kt + @) (10a)

go(1) = — Ak sin(kt + ) (10b)
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8:(1) = —k{Bysin[3(kt + ¢)] + B, sin[2(kt + ¢)]
+ By sin(kr + ¢)} _ (10¢)
where
B, ={A(405+ AD)]/4, B,=A%,, B,=A%4
Now .consider the sequences of functions

_.d"

ar le.(0];

&in i=02 (11)
where n =0,1,2,3,....

The right side of Eq. (8a) is an asymptotic expansion if &in
is an asymptotic sequence and R, is o(gin_1); that is, if

. i+ . Rin
lim Buner =0 and lim — =0
k=0 g, k=0g;n)

foralln  (12)

General expressions for g,, and g,, can be obtained by
putting Eqs. (10b) and (10c) into Eq. (11). Similarly, I,and J,
are evaluated by repeated integration of Egs. (52) and (5b) in
accordance with Egs. (8b) and (8c). Proof that the series
satisfy Eq. (12) is then straightforward. For example, when n
is odd, g.,_, is

k(3" "B, sin3Q + 2"~ ' B, 5in2Q + B, sinQ)

and the dominant terms of R,, vary with frequency as

k"*lcos3Q  k"*'cos2Q  k"+'cosQ
K+fi 7 R+ T kR+f,
where
Q=kt+¢

Note that f;, f,, and f; are independent of k. Since Q
approaches ¢ in the limit, the nonlinear terms are easily
shown to satisfy Eq. (12). A similar argument holds for even
values of n.

The most important property of asymptotic expansions is
that their partial sums have an error of the same order as the
first term omitted. For all values of n, Eq. (12) guarantees
that the error can be made arbitrarily small as k approaches
zero. However, the quality of the approximation depends on
the convergence properties of the series for fixed k. If partial
sums decrease initially, useful approximations can be obtained
even if the series ultimately diverge. Thus, the question of
establishing a frequency limit for practical applications is best
answered by examining the behavior of the first few terms.

To this end, steady-state lift response characteristics for an
airfoil oscillating about zero mean angle of attack were com-
puted. Motion variables are given by Egs. (10a—c) with
%= 0. There can be no response at the first harmonic fre-
quency 2k since B, =0 in this case.

Approximate lift responses were computed from Eq. (9)
with 1,(0) and J,(0) defined by Egs. (5a), (5b), and (8c). Both
I(1) and J,() were set to zero since only the steady-state
solution was desired. Corresponding exact steady-state solu-
tions were computed directly from Eq. (7) also using Egs.
(5a) and (5b) for F, and F,, respectively. Nonlinearity in the
quasisteady lift curve was neglected in both cases.

Partial sums of the series expansions, normalized by corre-
sponding exact solutions, are presented in Figs. 7-9. In
keeping with traditional dynamic testing practice, in-phase
(cosine) and out-of-phase (sine) components are presented
separately because they can be associated with static and
dynamic stability derivatives. (Splitting the series is permissi-
ble, as the sum of two asymptotic expansions is also asymp-
totic, provided they are defined with respect to the same
sequence.)

b
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Figure 7 shows partial sums representing the linear in-phase
component as a function of frequency and the number of
terms retained. Only the static lift-curve slope is included at
N =0, while I,g,, is added for ¥ = 1, and so on. As deter-
mined by the ratio test, series for the linear components
converge for k < a, = 0.0455. Thus, characteristics just below,
at, and just above the convergence frequency are illustrated.
Asymptotic behavior is evident; accuracy is improved at any
N as frequency decreases. At frequencies above the conver-
gence frequency, however, the partial sums diverge immedi-
ately. If only the quasisteady term is retained, common
practice for rigid-body dynamics, errors on the order of 10
and 11% will be incurred at reduced frequencies of 0.045 and
0.050, respectively. Finally, the static lift-curve slope is within
6% and convergence is rapid (to about 2% with one addi-
tional term) at the lowest frequency of 0.03.

Convergence properties for the linear out-of-phase compo-
nents are shown in Fig. 8 and are quite similar to the linear
in-phase component. Greater percentage errors for the initial
term (31, 64, and 74% in order of increasing frequency) are
expected since there is no quasisteady term common to both
exact and approximate results.

J. AIRCRAFT

Properties for the nonlinear in-phase contribution at 3k are
displayed in Fig. 9. In this case, divergence occurs at frequen-
cies above 3k = b, = 0.254. Therefore, computations were car-
ried out at reduced frequencies of 0.050. 0.0847, and 0.090 to
include the highest frequency shown for the linear case and to
overlap the convergence frequency. Again, divergence is im-
mediate outside the radius of convergence. At k = 0.050 con-
vergence is relatively fast, to within about 4% in three terms;
however, the initial error is surprisingly high (35%) consider-
ing that this frequency is well removed from the divergence
boundary of 0.0847.

Similar results could be shown for the remaining nonlinear
contributions; but the point is that the series diverge for
frequencies greater than the slowest varying exponential in-
volved in the corresponding indicial response. That is, if for
large ¢, the indicial response varies as e =, then the conver-
gence frequency is given in terms of the indicial response time
constant by

kT =1
where
T= l/a

For responses at harmonics of the forcing function, the
harmonic frequency is to be used.

Relationship to Stability Derivatives

As Etkin'? has shown, the conventional stability derivative
representation can be derived easily from the premise that the
aerodynamic reactions are functionals of the vehicle state
variables. Two assumptions are required:

1) The motion is an analytic function of time.

2) Aerodynamic reactions are analytic functions of the
instantaneous state variables and their time derivatives.

The first assumption allows the functional to be replaced by
an ordinary function of the state variables and their deriva-
tives; the second permits a multivariate Taylor series expan-
sion of the function in terms of its arguments. The coefficients
of the series are the classic stability derivatives. Only the
linear terms are usually retained for small perturbation analy-
ses; however, nonlinear derivatives are sometimes included.
Alternatively, nonlinear effects can be included by treating the
derivatives as functions of the variables.

Similarities between Etkin's development and the derivation
of Eq. (4) are apparent. The significant difference is that the
latter is an approximation to a functional representing the
nonlinear indicial response rather than one representing the
total response. In the absence of bifurcation. putting Eq. (4)
into the superposition integral gives the total response to an
analytic motion input, Eq. (7). In this section, the asymptotic
approximation to Eq. (7). given by Eq. (9). is used to briefly
examine the implicit limits of the stability derivative ap-
proach. First, to gain physical insight, Eq. (9) is used to
replicate a previous result derived by Tobak and Schiff* for
the case of slowly varying harmonic oscillations about con-
stant mean values.

Recall that the infinite series in Eq. (9) are expansions for
the left side of Eq. (8a) (with i =0 and i =2, respectively)
and that I,(¢) and J,(¢) tend to zero as ¢ goes to infinity. Thus,
taking a sufficiently large t, say ¢,, and retaining only the
leading terms (n = 0) of the series:

J, Flx(t = 7,),7,J2(t — 1) d7,
0

~ J ) Fla(t, — 1)1, )21, ~ 1y) dry
0

~ —3(t )1, (0) + 0.57,(0)23(1,)] (13)
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Comparing the last two lines of Eq. (13), the integral is
dominated by the region near the lower limit (t, = 0). This is
to be expected on physical grounds since small 7, corresponds
to the recent past and the asymptotic nature of the series
requires the motion to be slow in some sense. This suggests
that in the integrand 7, can be neglected compared to ¢,, i.e.,

J"“ Flo(t, = 7)1y Jalt, —1,) dry
0 -
~ é(za) f'" Fla(t,),7,] dr, (14)
0

Finally, recalling that I,(z,) and J,(z,) are negligible and
Fla(t,).1,] = Fo(0.1)) + 0.5F,(0.1,)2%(2,)

the last lines of Eqgs. (13) and (14) are easily shown to be
identical.

Thus. to first order, lift due to alpha dot is proportional to
the area under the deficiency function evaluated at the instan-
taneous angle of attack. and thus

Cp 20} = -—fﬂ Fla(t,).1,] dy = 1,(0) + 0.51,(0)a*(z,)
0

In keeping with the spirit of the Taylor series interpretation of
the stability derivative concept, the following definitions are
perhaps preferable: '

CL,~ =1,(0)

&3¢
Cp,., =055 =0.55,(0)
. cxoa”

s o

Of course, additional information is obtained by including
higher-order terms in the series expansions. For example, the
second-order terms reveal that alpha-double-dot effects are
related to the second integral of the deficiency function again
evaluated at «{t,), as shown by Egs. (15):

Cp, =1L(0) and C..

3

. =0.53(0) (15)

However, both an additional term and an unexpected identity
appear:

2C,,,, =Cy,,, =0.51,(0)

Thus, dynamic stability derivatives and the dynamic terms
of the asymptotic expansions, terms involving 1,(0) and J,,(0),
are intimately related. When the asymptotic approximation to
the superposition integral breaks down, the stability deriva-
tive concept does also. For harmonic motion and deficiency
function forms given by Egs. (5a) and (5b), this occurs at
frequencies at or above the largest indicial function time
constant as shown in the preceding section. When nonlineari-
ties introduce harmonics, the harmonic frequency should be
compared to the time constant for the corresponding non-
linear component of the deficiency function.

Relationship to Steady-State Oscillatory Data

Direct measurement of nonlinear indicial responses is
difficult at best. Furthermore. suitable parameter identifica-
tion techniques to extract them from experimental data have
not been discussed in the literature. However, an assessment
of the usefulness of approximating the indicial-response func-
tional in terms of onset parameters [EqQ. (4)] needs to be
accomplished for more general cases than studied here. The
limited objective of identifying significant onset parameters
from steady-state oscillatory data is discussed in this section.
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Consider again a harmonic oscillation about a constant
mean angle of attack, given by Eq. (10a). Substituting Eqgs.
(10b) and (10c) into Eq. (9), the steady-state lift response has
the form

C, =Cp =G, cosQ + G, cos2Q + G, cos3Q
+ H, sinQ + H, sin2Q + H; sin3Q (16)

The time-invariant response arises from nonzero values of
oo and is simply the average of the maximum and minimum
quasisteady lift values:

Cro=2{l(2¢3 + 3A:)/12]CL," +C1,(0,20)}
From Eq. (9), it can be shown that all of the in-phase

contributions, G, through G,, are power series in k and
contain a frequency independent quasisteady term. For exam-

ple,

G, = A{C, (0,00) — Lk2+ L k* =}
+ (B D{Cy,,, — Dok + Tk =} (17a)
Gz = (32/4){CL,” _4j:k2 + 16J4k4 _ } (l7b)

where 1, and J, are evaluated at 7,=0.

The out-of-phase components are similar except that the
leading terms are first order in frequency and, as expected,
contain no quasisteady terms; e.g., B

Hy= —(By/2)k{J, — 41,k + -} (17¢)

Now, suppose that additional terms are needed in Eq. (4)
to represent adequately the indicial response. For example, if
onset rate is important and its effect varies linearly with angle
of attack, terms proportional to alpha dot and the product of
alpha and alpha dot should be considered. That is, two
additional series are introduced in Eq. (9) involving the
motion variables: C

g =d®> and g t) =’

From Eq. (10a), g; contributes a time-invariant term and a
first harmonic. Similarly, g, contributes a constant term and
components at the fundamental, first, and second harmonic
frequencies. Thus, including these terms leaves the form of
Eq. (16) undisturbed; however, its coefficients (G,,H,, etc.)
then contain contributions from each of the g;. As shown in
Egs. (17a—c), the effects of 4 and «, are separaple from
frequency effects; i.e., they may written in the form

G; =Gy j¢0,;+ Ga 6+ Gy je3; + Gy jCa (18)
where

Gij=G (Ada), c;;=ci k) j=123

ij
and / corresponds to onset parameter g;.

Individual effects due to each of the three nonlinear g; on
mean lift G; ; and H; ; are summarized in Table 1. Note that
each onset parameter has a unique signature and a test matrix
can be designed to accentuate the differences.

Table 1 Influence of onset parameters

Coefficient 8 £ &4
C., 0 A2 A3a,

Hy A +44%, 0 A3
G,.H, A’a, Al A,

G,.H, Al 0 A4}
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Given a candidate set of onset parameters, the identifica-
tion problem consists of solving for the unknown ¢,; on the
right side of Eq. (18). Thus, a relatively simple harmonic
analysis of data obtained by conventional techniques is suffi-
cient to identify active onset parameters. Finally, note that
this analysis requires no assumptions about the form of
deficiency-function time history. It does assume, however, that
no bifurcations occur within the test range and requires that
the series in Eq. (9) converge.

Concluding Remarks

Earlier, the nonlinear indicial response was introduced by
Tobak. Chapman, and Schiff as a means of modeling aero-
dynamic responses in nonlinear flight mechanics problems.
They have also suggested possible simplifications based on
relating indicial response to motion variables (and their
derivatives) evaluated at step onset.

In this paper, the implications of using a Taylor series
expansion (with respect to onset parameters) of the deficiency
function are examined. A particularly simple expansion is
shown to be applicable to thin two-dimensional airfoils with
wake distortion nonlinearities. Furthermore, given the series
approximation to the indicial response, the generalized super-
position integral can be approximated by an asymptotic ex-
pansion, valid for sufficiently slow motions. For harmonic
motion, the expansions diverge for frequencies greater than
the slowest varying exponential involved in the corresponding
deficiency function. The combined approximations, for the
indicial response function and for the superposition integral,
lead directly to relationships between conventional stability
derivatives and indicial response characteristics. In the ab-
sence of bifurcation, these relationships can be used to iden-
tify dominant onset parameters from steady-state oscillatory
force and moment data.

Further work is needed, especially concerning bifurcation
of steady-state responses to step inputs due to their impor-
tance to aerodynamic hysteresis. The usefulness of represent-
ing the indicial response as a function of onset motion
parameters depends on obtaining sufficient accuracy with a

J. AIRCRAFT

very limited number of terms. Assessments based on experi-
mental data at realistic reduced frequencies should be made.
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and
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Dynamic wind-tunnel test results of a 65-deg swept delta wing are reviewed. These tests involved body-
axis rolling motions at moderate (15- to 35-deg) angles of attack in both the Institute for Aerospace
Research 2 X 3 m low-speed wind tunnel and the 7 X 10 ft Subsonic Aerodynamic Research Laboratory
facility at Wright—Patterson Air Force Base. They included static, forced oscillation, and free-to-roll
experiments with flow visualization. Multiple trim points (attractors) for body-axis rolling motions and
other unusual dynamic behavior were observed. These data are examined in light of the nonlinear indicial
response theory. The analysis confirms the existence of critical states with respect to roll angle. When
these singularities are encountered in a dynamic situation, large and persistent transients are induced.
Conventional means of representing the nonlinear forces and moments in the aircraft equations of motion,
notably the locally linear model, are shown to be inadequate for these cases. Finally, the impact of these
findings on dynamic testing techniques is discussed.
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body-axis rolling moment and pitching moment
coefficients, nondimensionalized with respect to
qSb and ¢S¢, respectively '
dynamic rolling moment coefficient, C,(t) — Cju
static rolling moment coefficient, i.e., equilibdum
C, comresponding to the instantaneous value of roll
angle
nonlinear rolling moment indicial response, due to
step input in roll angle
~mean aerodynamic chord, ft
reduced frequency, wb/2U.
freestream dynamic pressure, Ib/ft?
Reynolds number
wing area, ft?
time, s
freestream velocity, ft/s
vortex breakdown position, fraction of root chord
aft of wing vertex
running time variable denoting motion history,
—w={f=T5s
total angle of attack, body-axis inclination with
respect to U, deg
time at step onset, s
body-axis roll angle, deg
initial roll angle for free-to-roll experiments, also
mean roll angle for harmonic motion experiments
circular frequency, rad/s
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Introduction

YNAMIC coupling between aircraft motion and aerody-

namic forces and moments acting on the aircraft is at the
heart of stability and control. Maintaining sufficient fidelity in
aerodynamic models for these interactions has become an in-
creasingly difficult problem in the face of flight envelope
expansion.

A theoretical method for studying the nonlinear aspects of
the flight dynamics problem has been under development by
Tobak' and his colleagues since the 1960s. Their initial ap-
proach? introduced two important new concepts: 1) a nonlinear
indicial response and 2) a generalized superposition integral.
As with linear indicial response methods, the idea is to rep-
resent aerodynamic responses (force or moment) due to arbi-
trary motion inputs as a summation of responses to a series of
step motions. The nonlinear indicial response, as opposed to
its linear counterpart, accounts for changes induced by the mo-
tion history leading up to step onset.

Subsequently, results from the growing body of nonlinear
dynamical system theory were used to greatly strengthen the
model.>* The key idea of these extensions has been to accom-
modate the existence of critical states, i.e., specific values of
the motion variables where discrete changes in static aerody-
namic behavior occur. These are singular points that require
special handling in the superposition integral. Critical states
are important because potentially large and persistent transient
aerodynamic effects can be anticipated when an aircraft en-
counters them in a dynamic situation.

Truong and Tobak® have also demonstrated that, for static
aerodynamic characteristics that are time invariant, the nonlin-
ear indicial response, together with the generalized superpo-
sition integral, can be derived directly from the Navier—Stokes
equations. Thus, the theory has a sound mathematical basis
and captures the flow physics as well. There is still much work
to be done, especially for cases involving time-dependent equi-
libdum states. Nevertheless, the theory is rich in its ability to
represent a wide range of important aerodynamic nonlinearities
that can be encountered in maneuvering flight.

Independently, Hanff® proposed the reaction hypersurface
model. As opposed to the time-domain indicial response
model, the hypersurface is expressed in terms of a set of in-
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dependent variables consisting of the instantaneous values of

“the motion variables and their time derivatives. It was, at its
inception, designed to be experimentally based and primarily
intended for simulations of aircraft motion in nonlinear settings
where the classical stability derivative approach breaks down.”
More recent work® has been aimed at establishing the theoret-
ical connection between the reaction hypersurface and nonlin-
ear indicial response models.

Experiments designed to study either of these mathematical
models demand a dynamic test capability that can efficiently
collect the necessary nonlinear and time-dependent data. A
large-amplitude high-rate roll oscillation system,” developed at
the Canadian Institute for Aerospace Research (IAR), meets
this requirement.

Hanff and Jenkins'® used this rig to study the roll dynamics
of both a 65-deg delta wing and an 80-65-deg double-delta
wing at the JAR. Their experiments produced some extremely
interesting results that require further explanation.

The 65-deg delta wing configuration was found to have mul-
tiple stable trim points in roll (depending on roll-axis incli-
nation) as reported by Hanff and Ericsson." Locations for
these attractors are repeated here in Table 1. They argue (based
on analysis of static rolling-moment data at o = 30 deg) that
asymmetric vortex breakdown, induced by differing effective
sweep angles on each wing panel, is the root cause. However,
the dynamic behavior observed in free-to-roll experiments is
harder to explain, although Hanff and Huang'? have shown that
the instantaneous loads are largely driven by the dynamics of
leading-edge vortex breakdown.

In free-to-roll tests, the model is given an initial roll dis-
placement, then released by disengaging a remotely actuated
clutch. The model is then free to roll about its body axis,
restrained only by a small amount of bearing friction in this
degree of freedom. The inertia of the moving system was ad-
justed to ensure that the free-to-roll responses were in the same
frequency range as the dynamic force measurements (about 7.7
Hz, see Table 2). Since frequency is inversely proportional to
the reference length at fixed flight speed, corresponding full-
scale vehicle frequencies are realistic.

Two free-to-roll time histories for the 65-deg configuration
at o = 30 deg, plotted in the phase plane, are shown in Fig.
1. Note that the trajectory for the —58.3-deg release angle
(solid curve) finds the stable equilibrium point at about 0-deg
roll, while the 53.1-deg release trims at about 21 deg. Both
trajectories pass quite close to attractors (21 and O deg, re-

269

when vortex breakdown occurs over the wing." Clearly, some
phenomenen, not explicitly accounted for in the two-dimen-
sional phase-plane representation, affects the motion. Persis-
tent motion history effects, perhaps related to vortex break-
down dynamics, that require more than a knowledge of the
instantaneous roll angle and roll rate are a strong possibility.

Finally, forced-oscillation motions about a zero mean roll
angle produce distinctly different rolling-moment responses
than those measured for motions with mean roll angles of 7
deg or greater.”® An analysis of the static and dynamic force
data® suggested that this behavior can be explained by the ex-
istence of critical states. Indeed, large transient effects (with
the magnitudes of the static and dynamic effects being of the
same order) were noted in the response following encounters
with the suspected critical states. These transients persist for
at least a quarter cycle at k = 0.08.

Follow-on tests, designed to investigate the cause of the be-
havior noted earlier, were conducted in the Subsonic Aero-
dynamic Research Laboratory (SARL) wind tunnel at Wright—
Patterson Air Force Base. An analysis of the static, dynamic,
free-to-roll, and flow visualization data taken during these ex-
periments is presented later. Relevant aspects of critical-state
theory are discussed and data confirming the existence of roll-
motion critical states are presented. The impact on dynamic
testing techniques (including data collection and reduction)
and application to the simulation and analysis of the flight
dynamics problem are addressed in this article’s final sections.

SARL Experiments

IAR’s high-amplitude, high-rate roll apparatus was also used
in the SARL tests. A comprehensive experimental program
involving over 800 runs was conducted using the 65-deg delta-
wing configuration (Fig. 2). The test matrix is summarized in
Table 2.

Since SARL is an open-return atmospheric tunnel, the IAR
Mach number, Reynolds number, and reduced frequencies
could not be matched simultaneously. However, test conditions
were chosen to match those at the IAR as closely as possible.
In addition, the model support systems and tunnel cross-sec-
tion geometry are quite different in the two tunnels. Thus, the

2000 T T T Y T

spectively) with very low rates, but do not trim there. This 1000 ]
behavior was highly repeatable. Furthermore, the trajectories o
intersect at several points. Similar intersections of phase-plane 3 [
trajectories (for wing-rock motions) have been observed only 3 |
Z 0 N
Q
Table 1 Roll E 1
attractor locations =
)
Angles, deg « -1000 - . e A
Sting Roll JRRCEERE L i
20 0
25 :1.5 = 1 1 1 1 ]
30 0, x21 200960 -40 -20 0 20 40 60
35 =11 Roll Angle, 6 (deg)
40 0
Fig. 1 Free-to-roll motions: o = 30 deg.
Table 2 SARL test conditions
Total angle of
Test type Roll offset, deg Amplitude, deg Frequency, Hz attack, deg
Static force —-70-70 NA NA 15, 30, 35
Dynamic force 0-42 5-40 1.1, 44, 7.7 15, 30, 35
Free-to-roll —65-65 NA 7.7 30, 35
Flow visualization 0-42 5-40 0,1.1,44,7.7 30, 35
Surface pressure 0-42 5-40 0,1.1,22,44,7.7 15, 30, 35
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Fig. 2 Model geometry.

very good facility-to-facility repeatability eliminated the pos-
sibility of significant support and wall interference effects.

Dynamic force and moment measurements were taken with
the model forced in constant amplitude harmonic motion. Data
were taken at 4.4 and 7.7 Hz (k = 0.08 and 0.14) to match
IAR conditions. These results closely tracked static measure-
ments except when the motion passed through small roll an-
gles.® Thus, in the SARL experiments, dynamic tests were also
conducted at 1.1 Hz (k = 0.02) to determine how the extremely
large dynamic effects, incurred at small roll angles, approach
quasisteady behavior at low reduced frequency.

Laser-sheet flow visualization data and unsteady surface
pressure measurements were also taken. Thus, an extensive
data set was created that allows a coordinated study of vortex
dynamics (including breakdown) and the resulting unsteady
aerodynamic forces and moments.

Free-to-roll experiments were also repeated in the SARL
tunnel. These data provide an independent check on the ac-
curacy of the dynamic force measurements (and the mathe-
matical model used to represent them) since the measured
forces, together with the known model and test-rig inertia, can
be used to predict the free-to-roll motion.

Critical States, Theoretical Basis

A development of the nonlinear indicial response and critical
states™>* is beyond the scope of this article. However, some
key results, pertinent to the present discussion, are sum-
marized:

1) The nonlinear indicial response (NIR) is represented
mathematically as a functional to incorporate the motion his-
tory effect.

2) The NIR is a derivative, called the Fréchet derivative, of
the functional representing an aerodynamic response in terms
of its motion history. It is the limit, as step height goes to zero,
of the incremental response (due to the step input) divided by
step height. Following Tobak’s notation,’ the rolling moment
due to an infinitesimal step in roll angle is written

C 1) = C () 1, 7]
where square brackets denote a functional; the first argument
is the independent function defining the motion history (roll
angle in this case); and arguments following the semicolon
give, respectively, the times at which 1) the response is to be
evaluated (observed) and 2) the step motion was initiated.
Therefore, the function ¢(£) is to be interpreted as the mo-
tion history from ¢ = —~ to step onset 7, and the motion is to
be held constant at ¢(7) thereafter. The long-term behavior of
the aerodynamic response functional (after transients due to
the motion have died away) is called the equilibrium state.
3) If the Fréchet derivative exists everywhere on a time in-
terval (i.e., for the range of motion variables encountered on
that interval), the generalized superposition integral may be

13

JENKINS, MYATT, AND HANFF

used to construct the net aerodynamic response (rolling mo-
ment in this case) over the interval. Thus,

C(1) = CLP(&); 1, 0] + f Cl$(); 1, 7] %2 dr
R T

Following the notation introduced previously, the first term on
the right-hand side (RHS) is the rolling moment at time  re-
sulting from the roll-angle variation ¢(¢), which is the motion
history prior to £= 7= 0, and is held constant at ¢(0) for all
£= 0. The functional in the second term is the NIR, as defined
earlier. In this case, 7 is the variable of integration and the time
at step onset. Thus, the integral sums the effects of all indicial
responses over the interval O to ¢,

4) If, on the other hand, there are specific points 7. within
the interval where Fréchet differentiability is lost (at a critical
state ¢,), the integration may not be carried beyond the instant
at which a critical state is encountered without acknowledging
the existence of the singularity.

5) Loss of Fréchet differentiability is handled by allowing
the equilibrium response to change discretely to a new state.
Thus, the integral must be split to isolate the critical state, i.e.,

"8

dé

Ci(r) = Gl 1, 0] + f C I 1 1) - dr
o T

' d
+ f C o)t 7] E? dr + AC(t ¢.)
where

8y

AC(t b)) = CLP(E)s 1, 7. + 8] — Cld(6); 1, 7. — €] .

AC, as given by Eq. (2), is the transient response associated
with ¢.. Note that it depends on the motion history from —
to just beyond .. However, its effect per51sts for times ¢ > Te

6) Fréchet dlfferent.labxhty may be lost in several ways.! A
very important case is when time-invariant equilibrium flows
lose their analytic dependence on a motion parameter (body-
axis roll angle in these experiments). There are at least two
ways this can happen, both involving an exchange of stability
among competing equilibdum flows:

a) Static aerodynamic responses (i.e., responses correspond-
ing to solutions of the time-invariant form of the Navier—
Stokes equations) can develop a fold at a critical value of the
motion parameter, possibly an indirect result of a subcritical
bifurcation. The response slope becomes infinite at the fold,
invalidating the Fréchet derivative. Note that a subcritical bi-
furcation requires the existence of multiple (nonunique)
steady-state solution curves on both sides of the parameter’s
critical value.'* However, there is an exchange of stability
among the available branches at the critical value. The initial
or basic solution becomes unstable when the parameter is
greater than the critical value, Any perturbation will force a
transition to a new (and stable) equilibrium flow. The transition
is seen as a discontinuous jump when plotted vs the motion
parameter; however, its time history is given by Eq. (2).

b) Static aerodynamic responses can experience a supercrit-
ical bifurcation at a critical value of the motion parameter.
Responsc-curve slopes become discontinuous at such points,
again invalidating the Fréchet derivative. Nonumque steady-
state solution curves are requu’ed in this case also."* The ap-
parent discontinuous jump in slope is caused by a transition
from the unstable basic solution to an intersecting (stable)
equilibrium-solution -curve as the motion parameter passes
through the critical value. In general, the intersecting solution
curves are smooth.
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7) Changes in flow topology (a change in the number of
singular points in either the external flow or in skin-friction
lines) when the motion parameter reaches a critical value may
signal the loss of Fréchet differentiability. Tobak et al.! antic-
ipate that equilibrium responses could cease to be analytically
dependent on the motion parameter at such points. They also
state that there could also be ‘‘a significant increase in the time
required for the ... response to reach a new equilibrium
state.”’ .

NIR theory, as outlined previously, is used extensively to
interpret the new experimental results. However, there are im-
portant restrictions implicit in the analysis. Static force data
have been time averaged to remove the effects of model and/
or sting vibrations, freestream fluctuations, etc., and also to
stay within the NIR theoretical framework (which in its current
form requires time-independent equilibrium states). Further-
more, the relationship between time-averaged force and mo-
ment behavior and topology changes in the corresponding
mean flow deserves closer scrutiny since it is highly desirable
to have definitive experimental evidence pointing to critical
state locations. Therefore, the potential impact of time-aver-
aging and mean-flow topology changes are examined in the
following section. This is done by using a well-known flow as
an example. In this case, the parameter controlling the flow-
field evolution is Reynolds number (as opposed to an evolution
with respect to a motion variable as discussed earlier).

Flow About a Cylinder
Consider the two-dimensional flow about a circular cylinder
at Reynolds numbers ranging from zero to values beyond the
onset of vortex shedding. As Re is increased from zero, the
force balance (initially between only pressure and- viscous
forces) must accommodate the increasing effects of inertial
forces. At very low Reynolds numbers, the flow remains fully
attached to the cylinder (as shown in Fig. 3a); the flowfield
topology is characterized by two half-saddle points'® located
at the fore and aft stagnation points on the plane of symmetry.
A separation bubble appears at Re =~ 7 (based on the cylinder
diameter) as shown in Fig. 3b. Associated with the bubble are
three half-saddle points on the surface (an increase of two)
plus a saddle point in the downstream flowfield that provides
closure for the bubble. In addition, there are two nodes (de-
_ generate foci, also called centers) that account for the closed
streamlines within the bubble. Thus, both flows (with and
without the standing eddies) conform to the topological rule'*

for the flow in a planar slice through a body:

(2+33)-(3+13)--

where Xy and s denote the number of nodes and saddle
points, respectively, in the flowfield and X, and =, are the
number of half-nodes and half-saddle points on the body sur-
face, respectively.

Thus, there is a distinct change in flowfield topology at Re
= 7 (going from two topological singularities to a total of
seven, including three off-surface singularities). However, the
changeover is perfectly smooth. There are no competing (non-
unique) equilibrium solutions for 7 < Re < 50; i.e., the topo-
logical change does not involve a flowfield instability and the
possibility of a supercritical bifurcation must be ruled out.
However, the appearance of separated flow behind the cylinder
implies the existence of reverse-flow velocity profiles that are
more susceptible to instability. :

At a Re =~ 50, the flow within the bubble does become
unstable and vortex shedding begins. The resulting equilibrium
flow is time periodic, but there is a time-invariant mean flow.
Numerous calculations for the steady flow in this Re range
have been published.'® However, experiments by Nishioka and
Sato' (Fig. 4) clearly show that the separation bubble corre-

Fig.3 Steady flow about a cylinder: a) attached flow, Re < 7 and
b) with separation bubble, Re > 7.
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Fig.4 Separation bubble length vs Re with and without unsteady
vortex shedding.
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sponding to the time-invariant mean flow when vortex shed-
ding is present is very much shorter than it would have been
in the absence of fluctuations. Furthermore, the change in bub-
ble length begins abruptly at the critical Re (corresponding to
the onset of shedding), and entails a discontinuous slope with
respect to Re. A corresponding discontinuous change in the
slope of the integrated load, i.e., the mean drag, should also
be expected.

Note that there has been no change in the number and types
of topological singularities present in the mean flow at Re =
50 (although significant changes in topology are evident if the
flowfield is frozen at any instant). Thus, two time-invariant
equilibrium solutions are available above Re =~ 50, corre-
sponding to the cases with and without vortex shedding.
Therefore, the onset of a time-periodic equilibriurn condition
is seen as a supercritical bifurcation of the mean flow wherein
the long bubble solution loses its stability. However, there is
no corresponding change in mean-flow topology.

Recent computations by Chen et al."® strongly support the
notions that 1) there are no bifurcations associated with the
appearance of the separation bubble and 2) loss of stability in
the steady flow, through a Hopf bifurcation, is associated with
the onset of unsteady vortex shedding. '

Thus, the conclusions are as follows:

1) Under normal conditions (only one equilibrium solution)
a change in mean-flow topology cannot imply a loss of Fréchet
differentiability; i.e., there is no corresponding critical state.

2) Supercritical bifurcations of the mean flow can occur (a
critical state) without a coincident change in mean-flow to-
pology when the equilibdum flow becomes time dependent.

14
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3) The significance of a topological change in the mean flow
is that if inflexive velocity profiles are created, then the re-
sulting mean flow is more susceptible to instability.

These observations having been made, the discussion now
returns to the rolling delta wing.

Experimental Evidence

Based on the theory presented previously, acrodynamic data
in the presence of critical states should exhibit the following
traits:

1) Static (fixed vehicle attitude) flow visualization studies
may show a change in flow structure at a critical state. If the
visualization technique implicitly involves time averaging
(e.g., oil-flow studies of skin-friction lines), a topology change
is neither necessary nor sufficient for the existence of a critical
state. However, a mean-flow topology change can indicate a
susceptibility to instability and may be closely associated with
a subsequent critical state, especially if flowfield variables
(such as pressure gradient) are highly sensitive to small
changes in the parameter.

2) Static force and moment data should exhibit nonanalytic
behavior across critical states; i.e., there should be a discon-
tinuity in the variation of the force data and/or their derivatives
with respect to the motion variable if the equilibrium flow is
time invariant. The discontinuity is located at the critical state.
If the equilibrium response is not time invariant, a disconti-
nuity may still be apparent in the mean (time-averaged) loads,
as in the example presented earlier. This latter possibility is a
likely consequence of the basic flow becoming unstable,
thereby sending the unsteady equilibrium solution on a new
and stable path.

3) Transient effects should be observed following dynamic
critical-state encounters. The transient, AC, in Eqgs. (1) and (2),
will in general depend on motion history.

SARL data (for the rolling 65-deg delta wing) pertinent to
each attribute are discussed later. All data discussed here were
taken at the same condition (0.3 Mach number and o = 30
deg). For these discussions, the term static refers to the model
being held fixed (within normal experimental constraints) with
respect to the freestream and does not imply a time-invariant
equilibrium state. All measurements taken under static condi-
tions are time-averaged unless explicitly stated to be otherwise.

Static Flow Structure

Equilibrium vortex breakdown locations for the left wing as
a function of static roll angle, from Hanff and Huang,? are
shown in Fig. 5. (For positive roll angles, the left wing is on
the lee side; i.e., it has been rolled away from the freestream
velocity vector. Conversely, it is the windward wing for neg-
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ative roll angles.) The solid line is a linear least-square-error
fit to the circular data points (correlation coefficient 0.996).
Note that the experimental point at ¢ = 5 deg (triangle) departs
significantly from the linear fit. Thus, in agreement with Hanff
and Huang’s interpretation of Wentz’s" data, breakdown lo-
cation is seen to be a nonlinear (perhaps discontinuous) func-
tion of static roll angle in the 4- to 5-deg range. For ¢ greater
than 5 deg the breakdown point is well aft of the trailing edge.
In addition, vortex breakdown reaches the vertex at about ¢ =
—13 deg, as suggested by the linear extrapolation. When the
leading-edge vortex structure on both wings is considered, the
conditions [¢| = 5 and 13 deg are candidate critical states.

The first, |¢| = S deg, may be a critical state principally
because a discontinuous rearward shift of the breakdown point
on the lee wing would cause a jump (increase) in the equilib-
rium lifting pressures on that side (aft of about 80% chord
from Fig. 5). Any discontinuities in the forces (or their deriv-
atives) with respect to ¢ would, of course, invalidate the
Fréchet derivative. Time-averaged static force data supporting
this view are discussed later.

Secondly, |¢| = 13 deg is almost certainly a critical state
because, if the breakdown point reaches the vertex, the stag-
nation point in the vortex-core axial flow™ is lost. The precise
roll angle where this occurs is unknown due to flow visuali-
zation difficulties that require an extrapolation of the data to
the apex. However, the breakdown point will unquestionably
reach the vertex for a sufficiently large roll angle.

Static Force and Moment Behavior

Unsteady aerodynamic force and moment measurements,
taken under static conditions where vortex breakdown is ab-
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Fig. 7 a) Static (time-averaged) rolling-moment coefficient data, o = 30 deg; b) full-range polynomial fit to rolling-moment data: o =

30 deg, || < 20 deg; c) time-averaged pitching-moment coefficient data: o = 30 deg, | ¢| < 20 deg; and d) polynomial fits for the ranges

|¢| < 4.5 deg and |P| > 4.5 deg.

sent, are characterized by relatively small, broad-band, random
fluctuations about a well-defined mean value. (Mean values
calculated for overlapping 13-s samples repeat quite well.)
Power-spectral density (PSD) and autocorrelation plots for the
rolling-moment coefficient for such a case (¢ = 30 deg, ¢ =
20 deg) are presented in Figs. 6a and 6¢c. When vortex break-
down is near the trailing edge of the left wing and at about
40% root chord on the right wing, o = 30 deg and ¢ = 5 deg,
there is a marked increase in the low-frequency content of the
PSD (Fig. 6b), i.e., for nondimensional frequencies, {f b)/
(2U..), less than about 0.04. As a result, the rms value of the
fluctuations goes from 0.0025 to 0.0033 (a 32% increase) and
the autocorrelation, Fig. 6d, takes on a distinctly quasiperiodic
appearance.

Time-averaged static rolling-moment coefficient vs roll an-
gle is presented in Fig. 7a. Also shown are the critical states
locations corresponding to the loss of a coherent vortex on the
windward wing (breakdown reaches the vertex). The degree
of unsteadiness, in terms of the rms value of the fluctuations
about the mean, is shown by error bars in Fig. 7d.

If critical states exist in the roll-angle range tested, then the
function representing the rolling moment (or any other force/
moment) cannot be analytic. Given only values for a function
at a discrete number of points, it is impossible to prove that it
is (or is not) an analytic function. However, a cursory inves-
tigation of its behavior is worthwhile.

If a function is analytic it can be represented by a Taylor
series. Therefore, a stepwise regression analysis was used to
look for a polynomial (least-squares fit) representing C, as a
function of ¢ since the polynomial can be interpreted as a
truncated Taylor series. Thirty-two terms (each an odd Legen-
dre polynomial®') were included in the list of possible contrib-

utors to the regression equation. Test data points were inter- -
polated (with a cubic spline) at 255 points distributed in a
geometric sequence beginning at the origin and increasing in
either direction; i.e., the ratio of ¢., to ¢, was held constant.
The proportionality constant between successive interpolation
points was systematically varied such that intervals between
successive points (¢i.; — ¢,) at the extremes ranged from 2
to 40 times the interval at the origin ¢, — ¢. This was done
to give additional weight to points near the origin, where the
rolling moment is rapidly varying, while keeping enough den-
sity at the extremes to prevent the polynomial from oscillating.
Values between 30-40 were used in the final results discussed
later.

The solid curve (labeled Full Range Fit) in Fig. 7a is the
polynomial fit over the complete roll-angle range. Thirteen
terms were included in the final regression equation; the rest
were rejected because they offered no improvement in the cor-
relation. Note that the stable trim point at ¢ = 0 deg was not
captured despite the heavy emphasis given to points in this
region (160 of 255 points were within |¢| < 16 deg). However,
this result may be influenced by a gap in test data coverage
on either side of the critical state at about 13 deg (raising
questions about the validity of the spline fit in this region).
Further static testing is required to determine the actual
behavior.

An expanded view of the region —20 deg =< ¢ = 20 deg
is presented in Fig. 7b. Also shown is the cubic spline fit and
the possible critical state at ¢ =~ 5 deg (from flow visualization
results). Note the separation of data points for {¢| =< 4 deg
and for 5 deg =< |¢| = 7 deg. Moreover, Fig. 7¢c (pitching
moment vs roll angle) reinforces the notion that there is a
discontinuity between the two groups. Both effects, a nose
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down pitching moment increment and a positive (right wing
down) rolling-moment increment as the roll angle increases
from +4 to +5 deg, are consistent with the aft movement of
the vortex breakdown point on the lee wing noted earlier.
Finally, as shown in Fig. 7d, considerable improvement in
the polynomial fit is possible if the independent variable range
is broken into regions and distinct polynomials are used for

each of them. Interestingly, if breakpoints are included only at .

¢ = *4.5 deg to model apparent discontinuities there, the
polynomial’s slope at 4.5 deg contrasts sharply with test data
at 5, 6, and 7 deg. An additional breakpoint for the critical
state at approximately 13 deg would resolve this mismatch in
slopes. In summary, the inability to perform polynomial fits
(without breaking the interval into smaller pieces) supports the
notion that critical states exist near the locations cited previ-
ously. Again, additional static data are needed to fully justify
this conclusion.

Thus, for |¢| decreasing through 5 deg (breakdown moving
from the wake to a position over the wing), static flow visu-
alization and force/moment data suggest that a change in flow
topology is quickly followed by a subcritical bifurcation in-
volving an oscillatory instability. (Chaderjian and Schiff’s®
computational results reinforce the view that there are large-
scale fluctuations present in the equilibrium state.) However,
as the vortex breakdown approaches the wing apex, |¢] =~ 13
deg, the bifurcation that occurs would appear to be supercrit-
ical.

Dynamic Forces and Moments

If the conditions outlined, |¢| = 5 and 13 deg, are indeed
critical states, there may be discernible transients associated
with them. A previous analysis® of IAR data suggested that at
least one of these conditions contributed to significant dynamic
effects. In this section, SARL rolling-moment measurements
under dynamic conditions are examined for this behavior.

"1

Recall that the dynamic data are steady-state responses to
harmonic motion, i.e., starting transients have dissipated and
the aerodynamic response for each cycle is identical. Thus, if
time scales appropriate for the aerodynamic response are suf-
ficiently large compared to the period of the motion, the mea-
sured responses represent an aggregate of effects that were
initiated during earlier cycles. A significant frequency effect
will be observed under these conditions. Furthermore, transient
responses to single events occurring at discrete points during
each cycle become apparent as the frequency of the motion is
decreased.

Dynamic rolling-moment data taken for a 12-deg amplitude
body-axis rolling motion, centered about a mean roll angle of
14 deg, is presented in Fig. 8a. The abscissa is the argument
(wt) of the cosine function that defines the motion. Thus, pre-
cisely one cycle of motion is presented regardless of frequency.
Dynamic data taken at three reduced frequencies (¢ = 0.02,
0.08, and 0.14, respectively), are shown. In addition, the roll-
ing-motion time history and static data (plotted as functions of
the instantaneous roll angle) are presented for reference.

Note the dramatic differences in waveform between re-
sponses at the two highest reduced frequencies and the k =
0.02 data (where distinct transients originating at critical states
become more apparent). The critical-state encounter at an wt
of about 95 deg (highlighted by the vertical bar) is readily
discernable. However, later in the cycle, where transient effects
overlap, a positive identification of distinct events is more
difficult.

Significantly, responses for all three frequencies follow the
static data closely for wr in the range O to about 95 deg (26 deg
= ¢ = 13 deg), then depart from the static curve. In addition,
dynamic responses at all frequencies approach the static value
at the end of the cycle, the deviation increasing with frequency.
Thus, the rolling-moment response appears to be essentially
quasisteady when transients due to critical-state encounters have




JENKINS, MYATT, AND HANFF 275

had time to die out. This notion is supported by the data pre-
sented in Fig. 8b, which show static and dynamic rolling-mo-
ment data for 12-deg oscillations about a mean roll angle ¢, of
28 deg. Roll angles traversed by this motion, 16-40 deg, pre-
clude any encounters with suspected critical states. Differences
between the static and dynamic data are likely within interpo-
lation errors caused by the sparsely spaced static data in this
region. Again, if there are no recent critical-state encounters, the
rolling-moment behavior is quasisteady

The situation shown in Fig. 8c is somewhat different; in this
case, the motion (12-deg amplitude about a 3-deg offset) is
centered between critical states. Therefore, the order, number,
and elapsed times between encounters are different than those
in Fig. 8a. Also, roll rates at || = 5 deg are much higher than
before (the converse is true at ¢ = 12 deg). Definite breaks in
the rolling-moment response are evident at ¢ = *5 deg. Again,
a departure from quasisteady behavior is seen early in the cycle
(at about ¢ = 12 deg).

When the static (equilibrium) flow is time-invariant, the NIR
can be represented as the difference between its steady-state
response and the deficiency function* The deficiency func-
tion is defined as

Flg(£)in, 11= Clo(£); =, 71 = C, [$(€); 1, 7]

where, in this case, the steady-state part (first term on the RHS)
is the derivative of the static rolling moment with respect to
roll angle. (Also, the steady-state term on the RHS can be
taken as the mean value of the static rolling-moment derivative
when the equilibrium state is time dependent.)

Thus, the time-varying part of the NIR is represented by the
deficiency function. When this form of the NIR is put into the
superposition integral [Eq. (1)], the steady-state part integrates
directly to give the change in the static coefficient between the
limits of integration. Therefore, the steady-state parts of the
initial condition, AC,, and the two integrals, sum to the instan-
taneous value for the static rolling-moment coefficient
Cisud @(0)]. Even in the nonlinear case, with critical states pres-
ent, the total response under dynamic conditions may be sep-
arated into a static component (evaluated at the instantaneous
roll angle) and a dynamic component. _

The dynamic rolling moment coefficient C,4, is shown in
Fig. 8d for a roll-angle offset of a 3- and 12-deg amplitude
(the same motion as Fig. 8c). Comparing Figs. 8c and 8d, note
that the static and dynamic components are the same order of
magnitude. Also, as shown in Fig. 8d, locations for critical
states, identified from both static flowfield structure and static
force behavior, correlate well with dramatic changes in the
dynamic rolling-moment response.

The results discussed earlier for a limited number of motions
apply over a wide range of test conditions as shown in Figs.
9a-9c. Each of these is a contour plot of the dynamic (total
minus static) rolling-moment coefficient presented in the phase
plane. Each represents k = 0.08 data for the complete range of
test amplitudes at a given roll-angle offset. A series of tests
with fixed offset and frequency generates a family of ellipses,
centered about the offset angle. As the rolling motion pro-
ceeds, the ellipses are traversed in the clockwise direction. Off-
sets for each of the figures are 0, 7, and 14 deg, respectively.

The contours were established by first finding a mathemat-
ical representation for the rolling-moment data. A regression
procedure, similar to that reported in Ref. 8, was used to do
this. A correlation coefficient of 0.97 was achieved for data
covering all test conditions at & = 0.08 and 0.14.

In all cases presented in Figs. 9a—9c, the contour lines turn
rapidly, becoming essentially parallel to the roll-rate axis at
¢ = *5 deg. Moving clockwise in the bottom half of the
ellipse through ¢ = —5 deg, the contour lines again turn rap-
idly between —10 and —15 deg to run nearly parallel to the
roll angle axis. Note that this turning point is less distinct than
the first, perhaps because the static data have been faired

At

3}

Nondimensional Roll Rate, ¢ (deg)
o
T

-4
-45

o
~

Nondimensional Roll Rate, ¢ (deg)
o
T

1 - 1
-30 -15 0 15 30 45

o
~

Nondimensional Roll Rate, ¢ (deg)

60
<) Roll Angle, ¢ (deg)

Fig. 9 Dynamic rolling-moment contours: a) k = 0.08, ¢, = 0
deg; b) X = 0.08, ¢, = 7 deg; and c) k = 0.08, ¢, = 14 deg.

through this region. The pattern repeats in the upper half of
the figure. Significantly, the loci of turning points are indepen-
dent of roll rate, further evidence that they are critical states
because they are determined by equilibrium conditions.

Following a critical-state encounter, the dynamic response
becomes weakly dependent on roll angle (contour lines nearly
parallel to the roll-angle axis). Contours in this region are
likely the result of expressing time variations implicitly in the
phase plane (rather than an actual dependence on roll angle or
roll rate).

Finally, note that as the offset roll angle is increased (allow-
ing more time to elapse between the critical-state encounter
near 13 deg with positive roll rate and the next 13-deg critical-
state encounter with negative roll rate) the region of negligible
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dynamic rolling moment in the lower-right quadrant expands.
There is more time for the transient to decay.

Significance of Results
Locally linear models are often used to represent aerody-
namic forces and moments in nonlinear flight simulations. In
this model, static forces and moments are represented by non-
linear functions of instantaneous values of angle of attack and
sideslip. Dynamic effects are calculated by using locally lin-
ear damping derivatives (linearized about the instantaneous

19

vehicle state). Dynamic nonlinearities are accounted for by
allowing derivatives to be functions of angle of attack and
sideslip.

Linearization of the damping derivatives is often a
consequence of the testing technique used to measure them.
Small-amplitude harmonic vehicle motions are used and only
the quadrature component of the loads at the frequency of the
oscillation is considered. Although this procedure is acceptable
in the absence of significant nonlinearities (as is the case in
many small amplitude motions), it leads to results that cannot,
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in general, be legitimately extrapolated in terms of rate, which
is precisely what locally linear models do.

To check the validity of locally linear damping derivatives
in the current case, forced oscillation data were reduced in this
manner, i.e., nonlinear static rolling-moment data were used
together with roll-damping derivatives, obtained from 5-deg
amplitude tests at different offset angles.'® Only the out-of-
phase rolling moment at the forcing frequency was retained,
although up to 20 harmonics were recorded. Thus, the result
is a derivative linearized about the mean roll angle of the mo-
tion. The locally linear model was then used to predict the
measured rolling moment (with all harmonics) over the same
motion as used to determine the damping derivative.

Comparisons between the model and measured responses
are shown in Figs. 10a-10f. In Figs. 10a—10d and 10f, the
damping derivative is taken to be constant (consistent with the
small amplitude, 5 deg, over which it was determined). How-
ever, in Fig. 10e the damping derivative was represented by a
nonlinear function of roll angle (owing to the larger amplitude,
18 deg).

Figures 10a and 10b show results for ¢, = 3 deg and reduced
frequencies of k = 0.14 and 0.02, respectively. The correlation
presented in Fig. 10a is totally unacceptable. Over much of
the cycle, the model predicts a positive rolling moment, while
the actual response is the opposite. At the lowest reduced fre-
quency (k = 0.02 in Fig. 10b), there is much better agreement,
but the result is still inadequate. Even at this extremely low
reduced frequency, there is a lag in the actual response that is
not captured by the locally-linear model.

Further insight is provided by Figs. 10c and 10d, which
should be compared to Figs. 10a and 10b, respectively. In-
phase (circular symbols) and quadrature (squares) components
of the actual responses are compared to the corresponding
components according to the locally-linear model; i.e., static
rolling moment and linearized damping terms, respectively. At
k = 0.14, linearization of the damping term (based on experi-
mental data taken at this frequency) is certainly valid over the
range of roll rates encountered in Fig. 10c. However, signifi-
-cant errors are introduced by approximating the in-phase com-
ponent with the static data.

Similarly, at k = 0.02, most of the locally linear model’s
error is again seen to be due to a poor prediction of the in-
phase component as shown in Fig. 10d. However, some non-
linear effects are now seen in the quadrature component. The
latter problem is compounded if damping derivatives based on
small-amplitude, low-frequency (k = 0.02) data are used to
extrapolate to higher angular rates. Such a case is shown in
Fig. 10e where the prediction for k = 0.14 with 3-deg offset
and 18-deg amplitude is compared with the corresponding ob-
served rolling moment. Note that the 5-deg amplitude, the
smallest used in this test series, is two to three times larger
than that used in typical low-amplitude tests. Derivatives based
on larger amplitude data (with their associated higher rates)
can therefore be expected to yield better predictions when ex-
trapolated to the high rates. Even so, the results are totally
unacceptable; the in-phase component errors are completely
swamped by those in the damping term. Note that the peaks
in the prediction are centered about wt values of 90 and 270
deg where the rate is the highest.

Finally, note the good agreement in Fig. 10f. In this case,
the offset roll angle of 28 deg and the 5-deg amplitude ensure
that the critical states cannot be reached. The discrepancies
here are likely the result of interpolation errors in the static
component. Thus, the principal difficulty with the locally linear
model noted here is when the motion includes critical states.

Similar effects can be observed in Fig. 11 where trajectories
corresponding to three free-to-roll releases are superimposed
on a phase-plane portrait constructed with the locally linear
model. Obviously the latter is totally incapable of representing
the dramatic motion history effects and nonlinearities that pre-
vail following critical-state encounters. Therefore, testing tech-
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Fig. 11 Actual free-to-roll motions vs locally linear phase por-
trait.

niques must involve model motions capable of eliciting the
transient responses not observable with small-amplitude low-
rate experiments. Instantaneous values for aerodynamic loads
must be measured to permit observations of these transients.
Furthermore, changes in skin-friction and flowfield topology
(together with a careful interpretation of static data) may in-
dicate values for flow and motion parameters where critical
states are likely to occur.

Clearly, significant errors result if the effects of critical-state
encounters are not handled correctly. Therefore, aerodynamic
models that can account for the existence of critical states and
the transients induced by them are required.
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Critical States and Flow Structure on a 65-Deg Delta Wing
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U.S. Air Force Wright Laboratory, Wright—Patterson Air Force Base, Ohio 45433

Swept and delta wings maneuvering at moderate and high angles of attack produce highly nonlinear
and often discontinuous aerodynamic forces and moments that are difficult to model. The nonlinear
indicial response (NIR) methodology and the concept of critical states accompanied by changes in the
flow structure and topology could provide a rational framework for the analyses and modeling of these
flows. The analysis of surface oil-flow photographs and laser light sheet high-speed video images of smoke
flow has been performed. The correlation of the structural and topological changes in the flow with force
and moment data follows. Critical states are often accompanied by changes in the flow topology and not
all topological changes produce measurable changes in the forces and moments, however, a useful rela-

tionship may exist.

Introduction

IRCRAFT with delta wings have flown since the early

1950s (Vulcan, F-102, Mirage III, MiG-21, B-58, XB-70,
Eurofighter 2000 prototype, etc.), when the jet engine with its
higher speed capability replaced propellers and piston engines.
The drag reduction for thinner wings with increased sweep was
well known and leads to the delta planform with greater struc-
tural rigidity, gradual stall characteristics, and high lift at ma-
neuvering and landing attitudes and speeds. The triangular
delta wing was, however, not without disadvantages that re-
quired stability augmentation and double-delta, straked delta,
and other closely related planforms to correct. While primarily
used for high-performance fighter aircraft, these planforms also
have found application to the Concorde supersonic transport
and proposed High Speed Civil Transport designs.

The nonlinear lift increase at low speeds is generated by
leeward vortices produced by the rolling up of the shear layers
emanating from the leading edges. These vortices, while pro-
ducing the desirable lift increase, considerably complicate the
flowfield and its prediction. The flowfield is symmetric and
predictable at moderate angles of attack for symmetric flight
conditions. Unpredictable changes in the static forces and mo-
ments occur during high angle-of-attack maneuvers and during
even moderate asymmetric flight conditions when vortex burst
may occur over the planform. Vortex burst or vortex break-
down is characterized by the sudden expansion of the highly
organized core into bubbles or spirals along the core axis.
Shortly downstream, the bubbles or spirals diffuse into a dis-
organized, swirling turbulent flow. Vortex burst normally oc-
curs first in the wake, proceeding upstream toward the wing's
apex as angle of attack, sideslip (windward wing only), or
aspect ratio increase. Associated with the forward motion of
the burst point are loss of lift, pitchup and nonlinear, often
discontinuous, pitching and rolling moment characteristics.'

Beginning in 1987, the Canadian Institute for Aerospace Re-
search (JAR) and the Flight Dynamics Directorate of Wright
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Laboratory have been pursuing a collaborative research pro-
gram on unsteady and vortex-dominated flows. The need being
addressed is the lack of appropriate mathematical modeling
techniques to represent the interaction between the vehicle mo-
tion and the forces and moments created by these flows. The
requirements for aerodynamic modeling arise in at least three
areas: 1) for aerodynamic understanding and design, 2) for
control system design, and 3) for flight simulation.

A theoretical method for studying the nonlinear aspects of
the flight dynamics problem has been under development by
Tobak and his colleagues®™* at NASA Ames Research Center
since the early 1960s. Their approach introduced two impor-
tant new concepts: 1) a nonlinear indicial response (NIR) and
2) a generalized superposition integral.

The NIR approach, which has been derived from the
Navier—Stokes equations for a time-invariant equilibrium
state,* allows that critical states may be signaled by changes
in the static flow topology, often manifest in the position and
behavior of vortices within the flow. The movement of the
leading-edge vortex burst point onto the planform and the in-
troduction of secondary ‘and tertiary vortices are examples of
topological changes, as are changes in the number of singular
points in the skin-friction lines. In principle, the NIR is not
restricted to a time-invariant equilibrium state; however, the
details of the proof have not been completed and published.

As with linear indicial response methods, the arbitrary mo-
tion is represented as a summation of responses to a series of
step motions. The NIR, as opposed to its linear counterpart,
accounts for changes induced by the motion history leading
up to step onset. Under a wide variety of circumstances, the
summation of indicial responses approaches the generalized
superposition integral in the limit.

The formulation also allows for critical states where the
aerodynamic response loses analytical dependence on the mo-
tion variable, such as when aerodynamic bifurcations occur.?
A critical state is accommodated by splitting the generalized
superposition integral at the critical state and including a tran-
sient response term. Its location is defined by the values of a
set of variables that characterize the instantaneous motion.

A critical state is a flight condition where large and persis-
tent transients may be introduced into the aerodynamic loads,
invalidating the linear and locally linearized aerodynamic
models traditionally used for flight mechanics predictions. For
example, the result of roll-angle and roll-rate-induced veloci-
ties at the leading edge of a delta wing is an unsymmetrical
vortex lift that produces a highly nonlinear (perhaps discontin-
uous) change in the rolling moment.

A critical state is often associated with a change in the num-
ber of critical points in the static time-averaged surface flow

A3
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topology as shown later. Physically realizable flows produce
streamlines and skin friction line patterns in oil flows that must
satisfy topological rules based entirely on kinematics and the
differential equations of streamlines. A stagnation point is a
critical point, also called singular point and equilibrium point,’
in the flow as is a point where the skin friction vector is zero.
Critical points are classified as nodes or saddles depending on
their appearance and mathematical properties. Nodes are fur-
ther subdivided into nodal points of attachment or separation,
foci, and centers. All skin-friction lines or streamlines intersect
at the node and are directed away from a node of attachment
and toward a node of separation. The focus or spiral node has
all of the lines spiraling inward or outward around the critical
point. If the trajectories form closed paths around the focus, it
is a center. The saddle has two oppositely directed lines that
intersect at the critical point. All other lines curve away in
each quadrant to avoid this critical point.

The correspondence between critical states and static flow

topology changes is controversial, especially when time-aver-
aged data (e.g., surface oil flow studies) are involved (see Ref.
6). The analytic dependence of the aerodynamic response may
be lost at a change in flow topology, i.e., when a change in
the number of critical points is observed.® A current consensus
is that critical states are often signaled by changes in the flow
topology; however, some changes in the flow topology do not
produce measurable force and moment transients. A complete
discussion of the controversy and how vortex formation in the
wake of a circular cylinder at low Reynolds number provides
a counterexample has been given by Jenkins et al.®

Experimental Program

The flow about delta wings is highly sensitive to very small
differences in model geometry, motion variables, and flow con-
ditions making analysis and correlation of the vast amounts of
available data difficult. The experimental program eliminated
many of these variables by testing the same model in two wind
tunnels at similar flow conditions with overlapping ranges of
the motion variables and different support systems. The pro-
gram is continuing with previous measurements identifying
regions of particular interest for succeeding tests.

The common model is a 65-deg swept triangular wing with
sharp leading edges (10-deg symmetric nonconical bevel on
all three edges) and centerbody (Fig. 1). It was especially de-
signed and constructed to be lightweight, with low inertia to
attain the desired motions, yet strong enough to withstand the
loads encountered at the high pitch and roll rates required to
match full-scale aircraft reduced frequencies (see Hanff and
Jenkins’ for details).

Static and dynamic tests of this model have been a partic-
ularly rich source of nonlinearities and other unusual dynamic
behavior. The extensive experimental database allows concur-
rent study of vortex dynamics and the resulting unsteady aero-

Composite Construction
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L 1.90° J
(0.58 m)

Fig. 1 Model geometry.

dynamic forces and moments. The correct identification of
changes in the flow physics and topology is crucial to further
understanding the NIR methodology and its application to this
series of wind-tunnel test data.

The IAR experimental program, conducted in the National
Aeronautical Establishment 6 X 9 ft low-speed wind tunnel,
has been described by Hanff and Jenkins’ and Huang et al.'
The Wright Laboratory 7 X 10 ft Subsonic Aerodynamic Re-
search Laboratory and the experimental data has been de-
scribed by Jenkins and various coauthors.**’ JIAR personnel
conducted all dynamic testing using their roll rig. The most
extensive data set was taken at Mach number 0.3, Reynolds
number 3.6 X 10° based on the centerline chord of 2.04, (0.622
m) sting angle of 30 deg, with various static and mean roll
angles ¢, and roll rates. The static roll response is highly non-
linear,'® with three distinct static roll attractors. Further, forced-
oscillation and free-to-roll data exhibited strong nonlinearities
that cannot be modeled using locally linear models.®

Critical States and Topology

Analysis of the static and dynamic force and moment data®
indicated critical states near ¢ = 5 and 11.3 deg, based on
slope changes and discontinuities in the static time-averaged
pitching and rolling moments and transients in the dynamic
data. Additional evidence confirming the existence of these
critical states has been provided by a wealth of subsequent
experimental data®® and analyses."'' The following analysis
correlates the changes in static forces and moments with the
topology changes described by Huang et al.' The changes in
the forces are small because the vortex flow pattems contribute
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. less than 10% of the total lift at 30-deg angle of attack, zero
roll angle for this aspect ratio 1.86 wing. Thus, changes in the
vortex flows rarely obviate trends established by the attached
flow, as will be discussed subsequently. Critical states, how-
ever, lead to large deviations from the static characteristics,
especially in the moments.

Experimental data for the entire roll angle range (—90 to
+90 deg) and to an expanded scale emphasizing the 5 and
11.3 deg (to be discussed later) critical states are shown in
Figs. 2—5. The force and moment coefficients are based on
the dynamic pressure and the wing area of 1.94 ft* (0.180 m’).
Reference lengths are the mean aerodynamic chord of 1.36 ft
(0.415 m) for the pitching moment coefficient and the wing
span of 1.90 ft (0.58 m) for the body-axis rolling moment
coefficient. Dashed vertical lines indicate the critical state lo-
cations. The data has been sorted and plotted according to the
direction the wing was rolling toward (increasing or decreasing
¢) when the particular roll angle was attained. This is contrary
to previous analyses®®® based on rather sparse static data and
permits a more detailed examination for discontinuities, slope
changes, and hysteresis that indicate the crossing of critical
states.

The full-range data plots, Figs. 2a, 3a, 4a, and 5a, show
proper symmetry. Time-averaged force and moment behavior
at the previously determined critical states at large roll angles’
(—51.3, —49.5, 50.1, and 51.4 deg), are also shown on these
figures as dashed vertical lines. The data density on this scale
precludes definite identification of the critical states at either
¢ =5 or 11.3 deg. All data were fit using Legendre polyno-
mials and stepwise regression analysis as reported previously®®
on the earlier sparse data sets.
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Five.Deg Critical State

The discontinuity near 5-deg roll angle in Figs. 2b, 3b, and
4b is clearly a critical state. It is associated with the leeward
(port for positive roll angles) wing vortex burst rapidly
crossing the trailing edge during extremely small roll angle
increases, as shown by previous authors.*®” This is in agree-
ment with the topological maps of Huang et al.' that show the
primary vortex burst is over the leeward wing at ¢ = 4 deg
and is absent at ¢ = 7 deg. It is only the secondary and tertiary
vortices that lift off [shown as whorls or foci (spiral nodes) in
the skin-friction topology] at ¢ = 7 deg.

Figure 6a shows the vortex burst of the leeward leading-
edge vortex is 10~15% chord aft of the trailing edge at ¢ =
—5.4 deg, while Fig. 6b shows the vortex burst has moved
upstream onto the planform at ¢ = —5.0 deg. Note the rapid
forward progression to 10~15% chord ahead of the trailing
edge in only 0.4-deg roll angle change. This is the discrete
change that defines the critical state.

The increase in positive rolling moment as ¢ increases (Fig.
2b) is consistent with the formation of the coherent vortex over
the entire leeward wing. As the vortex burst point moves aft,
off the wing, the extended, concentrated vortex core decreases
the pressures on the leeward wing upper surface and contrib-

utes an additional destabilizing moment. The additional force

near the trailing edge also contributes a nose-down, stabilizing
increment to the pitching moment (Fig. 3b). The axial force
(Fig. 4b) shows an increase, consistent with the known drag
increase attendant with lifting leading-edge vortices. The nor-
mal force is decreasing because of the sideslip increase.

The regression analysis performed on data in this region was
split into two separate domains, increasing and decreasing ¢,
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Fig. 4 Axial force coefficient: a) full range, —90 = ¢ = 90 deg
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between ¢ = 5.0-5.7 deg. Only the increasing ¢ data were
used in this region for the regression fitting the lower branch
in this region, while only decreasing ¢ data were used for the
upper branch. This partitioning of data is consistent with the
definition of a static hysteresis, and shows that a narrow hys-
teresis loop apparently exists in this region. Further, two crit-
ical states must exist here, one at the terminus of each branch.
Past and present analyses of experimental data suggest such a
possibility. The analysis of Addington and Jenkins® show that
the leeward leading-edge vortex burst point crosses the trailing
edge from being over the planform at approximately ¢ = 5
deg. Huang et al.' analysis confirms this finding, as well as
suggests that an additional topological change occurs in this
region.

Several correlations have been devised to predict the move-
ment of vortex burst points with leading-edge sweep angle,
angle of attack, and roll angle. The predicted roll angle for
vortex breakdown at the trailing edge is 7 deg based on a linear
regression fit* of the static data of Hanff and Huang'*; 8.8 deg
based on Ericsson and Hanff’s'® method (using Wentz and
Kohlman’s" vortex breakdown correlations, vortex breakdown
occurs at the trailing edge at 19-deg angle of attack for ¢ =0
deg); and 13.7 deg from the revised Huang and Hanff"
method. Their correlations are a better approximation to ex-
perimental data''* for the 60- and 70-deg swept wings than
for the 65-deg swept wing, again indicating unusual behav-
ior™!® at this combination of roll and sweep angles. None of
these vortex breakdown prediction methods account for the
rapid jump in vortex position because they assume smooth
functions to correlate the experimental data.
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11.3-Deg Critical State

The tentatively associated change in flow topology near ¢
= 12 deg, the vortex breakdown point reaching the windward
(starboard) wing’s apex,® was shown to be erroneous® by anal-
ysis of the subsequent static and forced-oscillation dynamic
wind-tunnel data called for by Jenkins et al.® The assumption
of vortex breakdown reaching the apex of the windward wing
near ¢ = 12 deg was not unfounded, particularly in light of
the lack of detailed flow visualization data available at the
time. The linear regression data fit of Addington and Jenkins®

. \(uc.‘““‘g;:'.m‘m-i;{‘ ..

b) ... ,

Fig. 6 Leeward leading-edge vortex burst: a) in the wake, ¢ =
—5.4 deg and b) over the planform, ¢ = —5.0 deg.

Fig. 7 Laser light sheet flow visualization.
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description of the model and experimental setup is contained
in Hanff et al.® The change in flow topology is evident. Two
vortex whorl patterns are evident over the leeward wing at a
roll angle of —7 deg, while one is evident at ¢ = —14 deg.
These patterns correspond to the liftoff of the tertiary vortex
(Fig. 8) and to liftoff of both the secondary and tertiary vor-
tices (Fig. 9) on the planform. The flow pattemn and topology
sketches from Huang et al." show this topology change occurs
between roll angles of —7 and —14 deg, but the precise roll
angle and triggering mechanism are unknown. According to
Huang et al.,' the change in flow pattern corresponds to a
critical state crossing; however, additional images and analysis
are needed to fill these experimental data gaps.

From Huang et al.,’ between 10- and 14-deg roll angle, the
flow on the windward wing changes from an organized vortex
flow with the tertiary vortex lifting off the surface to a topol-
ogy representative of primary vortex breakdown advancing to-
ward, but not attaining, the wing apex. This creates a disor-
ganized spiraling flow aft of the breakdown, exhibiting reverse
flow partly swept across from the leeward wing, and a loss of
vortex lift on the windward wing. The leeward wing undergoes
a topological change indicative of reattachment of the second-
ary vortex near the wingtip as the roll angle increases. The
organized, spiraling flow beneath this secondary vortex in-
creases the normal force on the area near the wingtip and pro-
duces force and moment changes similar to the 5-deg case,
albeit smaller. The force and moment changes are also influ-
enced by the vortex lift loss over the windward wing.

Retumning to Figs. 2-5, at ¢ = 11.3 deg, the negative slope
of the rolling moment curve becomes less negative because of
the additional destabilizing moments contributed by both the
windward and leeward wings (Fig. 2b). The nose-up pitching
moment slope is increased by the additional force near the
leeward wing trailing edge (Fig. 3b), causing the discontinuity
in slope. The scatter in the axial force data (Fig. 4b) and the
magnitude of the changes precludes definitive conclusions;

Fig. 8 Surface oil flow, ¢ = —7 deg.

predicted ¢ = 13 deg, whereas the methods of Ericsson and
Hanff'® and Huang and Hanff"* predicted 12.6 and 12.15 deg,
respectively. Vortex breakdown would occur aft of the trailing
edge on the leeward wing and could not cause the observed
force and moment transients. The preceding analysis methods
generally agree with the original association of vortex break-
down at the apex. However, analysis of the previous dynamic
and new high-resolution static data taken in the same wind
tunnel using the same model (the sting and instrumentation
were different, which permitted additional verification of the
data through correlations at selected tie-in conditions) clzarly
shows that the critical state is not associated with vortex break-
down advancing to the apex at ¢ = 11.3 deg.

The experimental setup with the laser light sheet is shown
in side view in Fig. 7. The laser light sheet has progressed to
aft of the midchord and the leading-edge vortex over the entire
leeward wing is evident at ¢ = 14.5 deg. The light sheet shows
the shear layer from the windward wing has moved across the
centerbody at this chordwise station, in agreement with the
observations of Hsia et al.’ Video recordings of the fore and
aft sweeps of the laser light sheets show that the flow becomes
unsteady as the critical roll angle is approached and returns to.
steady motion as this roll angle is exceeded. While a still im-
age suitable for publication could not be captured by our
equipment, the videotapes clearly show a vortex near the apex
of both the windward and leeward wings at ¢ = 15 deg. Both
vortices are evident at all roll angles less than 15 deg, while
the vortex over the windward wing is not apparent at ¢ = 18
deg. The vortex persists over the entire leeward wing at this
roll angle.

Surface oil flows near the trailing edge at nearly the same
test conditions (30-deg roll angle and 0.3 Mach number) are '
shown in Figs. 8 and 9 at roll angles of —7 and —14 deg. A Fig. 9 Surface oil flow, ¢ = —14 deg.
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however, a discontinuity in slope is evident. The overall nor-
mal force is decreasing (Fig. 5b) because of increasing roll
angle and the additional force caused by the leeward vortex is
somewhat counteracted by the reduced vortex lift over the
windward wing. The rate of lift decrease is slowed and causes
the slope discontinuity.

8.5-Deg Critical State

A suspected critical state is marked at ¢ = 8.5 deg in Figs.
2b-5b. The topological change shown by Huang et al.' rein-
forces the evidence obtained by separately fitting the roll angle
increasing or decreasing data.

The polynomial regression fit of the experimental force and
moment data for increasing and decreasing roll angle is shown
as solid lines in Figs. 2b, 3b, 4b, and 5b. Two distinct branches
near ¢ = 8.5 deg are evident in each data set. The use of an
overlapping domain (from ¢ = 7.7 to 9.2 deg) to fit the data
increases the correlation coefficient compared to strictly mono-
tonic data fits.

Huang et al.' report that a topology change occurs between
¢ = 7 and 10 deg. This change is associated with global flow
separation occurring over the windward (starboard) wing as
roll angle increases. The force and moment discontinuities oc-
curring; increase in rolling moment, decrease in nose-up pitch-
ing moment, and decrease in axial and normal forces are con-
sistent with the loss of suction because of the disappearance
of the leading-edge vortex over the windward wing.

Discussion

The previous correlations agree with the topological analysis
of Huang et al.! that is based on oil flow pictures and video
images taken at discrete roll angles every 3 or 4 deg. Addi-
tional anomalies in the force and moment data create the pos-
sibility of additional topological changes. The separate analysis
of roll angle increasing or decreasing data indicates the pos-
sibility of hysteresis at the 5-deg critical state (Fig. 2b) that
would require two critical states, one near 5.0 deg and one
near 5.7 deg. Hysteresis is also evident in the pitching moment
data (Fig. 3b) and an additional discontinuity appears near ¢
= 8 deg, where flow visualization data were not recorded.

A presently unexplained anomaly appears in these data. The
branches in the force and moment data at ¢ = 8.5 deg cannot
form a hysteresis loop. The increases or decréases in the co-
efficients are either in the opposite direction or at opposite ends
of where they would occur in a hysteresis loop. Furthermore,
only one topology change is observed between ¢ = 7-10 deg
in the mean surface oil flows. The lack of data in this roll
angle range does not permit resolution of this anomaly, how-
ever, several possible explanations are 1) additional topologi-
cal changes occur in the surface flow, 2) topological changes
occur in the streamlines of the off-body flow, or 3) the flow
becomes unsteady through a Hopf bifurcation.

Current analyses are based on surface oil flows related to
static force and moment data. The time-averaging property of
this flow visualization method precludes inference of the un-
steady effects necessary to further elucidate the relationship
between critical states in the aerodynamic response and
changes in the number of critical points in the flow.

Certainly a wealth of interesting possibilities occurs that
cannot be confirmed based on presently-available data, but
point to the need for specific high resolution data to resolve
these questions. The high resolution available from Navier—
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Stokes numerical simulations'® of these experiments cannot be
equaled for directing attention to, and clarifying, otherwise
confusing or unnoticed flow features. It is currently too ex-
pensive to perform simulations at all of the points needed. The
need for additional testing to fill these gaps is evident.
Correlation of critical states and topology changes is ex-
ceedingly difficult and time consuming because of the preci-
sion and resolution required in both the static and dynamic
data. The static force and moment data across suspected dis-
continuities and hysteresis loops should be used, along with
flow visualization, to identify conditions for critical states.
Subsequent dynamic experiments should focus on these con-
ditions to identify critical-state transient characteristics.
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Introduction

T HE emergence and consequences of asymmetries in swirling
flows that are initally steady and axisymmetric are exam-

ined. The strength of an isolated vortex in a tube is increased in

AIAA JOURNAL, VOL. 34, NO. 3: TECHNICAL NOTES

nodes. The nondimensional tube length L for grids G1 and G2 is
20, whereas the tube length for grid G3 is 30. Grid G2 uses axial
clustering in the breakdown region to achieve a minimum axial
spacing of about 0.1 at x = 5. The time step At for runs using grids
G1 and G3 is 0.04, whereas runs on the finer grid G2 have a time
step of 0.025.

Axisymmetric, columnar conditions are specified at the inflow
boundary plane. The inlet axial velocity is chosen to be uniform.
The swirl velocity component ¥ is modeled from a Burger vortex
and is appropriate for modeling the profiles obtained from a swirl-
vane apparatus’:

90,r.0) =Vr (1) m

where r and € denote the radial and azimuthal coordinate directions
and V is the vortex strength. A nonuniform inflow density profile
based on columnar flow is prescribed as a Dirichlet condition.$ Slip
is allowed along the tube wall surface, yielding an impermeabil-

a parametric fashion through a critical value, where stability to
three-dimensional disturbances is lost. The flow behavior under-
goes a bifurcation at the critical value from steady and axisymmetric
flow to unsteady and three-dimensional flow. Other computations
of bifurcation phenomena in swirling flows have been presented
by Leibovich and Kribus,! Beran and Culick,? and Lopez.? These
works are limited to bifurcations that only involve axisymmetric
flows.

Axisymmetric base flows serve as initial conditions to a three-
dimensional time-integration algorithm. The minimum axial veloc-
ity component Q(t) is computed and compared with the initial value.
Of particular interest is the characterization of the stability loss and
the relationship between the appearance of asymmetries and the
associated changes in Q.

The computational approach is as follows. First, 2 pseudo-
arclength continuation (PAC) algorithm? provides the steady, ax-
isymmetric initial condition for a specified vortex strength V. The
Mach number M and Reynolds number Re (based on vortex core ra-
dius) are held fixed at 0.3 and 2.5 x 102, respectively. No nonunique
axisymmetric solutions are found at Re = 2.5 x 10, consistent
with Ref. 2. The two-dimensional solution is then interpolated
onto the three-dimensional mesh using a fourth-order-accurate cu-
bic spline scheme.* Then time integration is carried out by the
time-accurate Navier-Stokes (TANS) model. The TANS model is a
special-purpose, time-integration algorithm developed specifically
for this work and is described in Ref. 5. The TANS model em-
ploys fourth-order compact, or Padé, operators® to discretize spa-
tial derivatives, thus allowing for fewer grid nodes while main-
taining sufficient accuracy. A multiblock grid is used to allow for
a nearly rectilinear arrangement of nodes near the tube center-
line, while near orthogonality is maintained at the tube wall. The
PAC algorithm is implemented with the same boundary conditions
and tbe geometry as the TANS model, using a simple algebraic
grid.

The physical domain consists of a two-stage cylindrical tube of
circular cross section and varying radius.2 The first stage contains a
constriction that controls the upstream movement of the breakdown
region. The tube radius (nondimensionalized by vortex core radius)
at the inlet station is fixed at Ry = 2. The number of nodes in
the computational coordinate directions are (nx, ny, nz), where nx
defines streamwise spacing and ny and nz are equal and define
cross-plane spacing in the y and z directions, respectively. Three
grids are employed in this work. Grid G1 consists of 98 x 412
nodes, grid G2 contains 122 x 612 nodes, and grid G3 uses 146 x 412
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ity boundary condition that relates the axial and radial velocities.
Outflow conditions reflect an assumed columnar flow state.

between V = 1.5 and 1.53.

Results

Between V=1.0 and 1.5, the initially steady, two-dimensional
flow does not evolve in time to an asymmetric flow state. However,
asVisincreased slightly to 1.53, the flow becomes three dimensional
and time perjodic. As V is further increased, the magnitude of the
asymmetry also increases. This change in stability is attributed to
the crossing of a supercritical Hopf bifurcation point’ somewhere

The deviations from the two-dimensional initial conditions are
illustrated in Fig. 1, where Q (solid lines of Figs. 1a—1d) is plotted
vs time for V = 1.5, 1.53, 1.55, and 1.65. In Fig. 1a (V = 1.5), it
is evident that no appreciable deviation from the initial condition is
present. This is confirmed by monitoring the maximum solution cor-
rection at each iteration. AtV = 1.53 (Fig. 1b), the solution departs
from the initial condition, as evident by the increase in Q as time
increases. The term Q (1) eventually becomes time periodic, but this
behavior is not discernible from the scales of the figure. Perodicity
is confirmed using phase plots of the three velocity components at
a fixed centerline node near x == 7. At V = 1.55 and 1.65 (Figs. 1c
and 1d), much larger deviations are evident.

The effect of grid resolution, time step, and tube length are also
illustrated in Fig. 1. Figures 1a~lc show how grid refinement from
Gl to G2 affects Q. AtV = 1.5, resolving the grid from Gl to
G2 results in a slight decrease in the time-asymptotic value of Q.
However, the flow remains steady and axisymmetric. AtV = 1.53,
grid refinement results in a more pronounced transient response,
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Fig.1 Temporal behavior of @, grid and time-step sensitivity and tube
length L sensitivity: a) V = 1.5 (G1: coarse grid, G2: fine grid, L = 20),
b) V= 1.53,¢) V = 1.55,d) V = 1.65, ¢) effect of time step for V = 1.55,
and f) effect of tube length for V = 1.53 (G3: coarse grid, L = 30). ’
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possibly representing a slight shift of the Hopf point to smaller
values of vortex strength. The sensitivity to grid refinement appears
to diminish as vortex strength is increased away from the Hopf
point, as evident in Fig. lc. Figure le shows that reducing the time
step from 0.04 to 0.025, with grid G1, has a negligible influence on
the transient behavior of Q. This suggests that the differences in Q
evident in Figs. la~1c are due primarily to grid refinement and not
to the reductjon of the time step. Finally, the effect of tube length is
shown in Fig. 1f, where increasing the tube length L from 20 to 30
appears to have a small but negligible effect on Q.

The nature of the Hopf bifurcation is illustrated in Fig. 2. To iden-
tify the onset of three-dimensionality, a global parameter H is con-
structed and is defined to be the maximum absolute value of d5/d.
The term H is nonzero when the flow is asymmetric. In Fig. 2a,
H abruptly departs from zero between V = 1.5 and 1.53. Within
this range of V, fully three-dimensional solutions bifurcate from
the branch of two-dimensional solutions when the two-dimensional
solutions become physically unstable. Flow unsteadiness and asym-
metry are characterized by another parameter Q, which is defined
as the minimum and maximum values of the sum of the cross-plane
velocity components along the tube centerline. By definition, Q is
zero for an axisymmetric flow. In addition, since the cross-plane ve-
locity components are unsteady, periodic functions (past V = 1.5),

Fig. 3 Particle traces showing development of three-dimensionality with increasing vortex strength: a) V = 1.5,b) V = 1.53,¢) V = 1.65, and d)

V=223
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Q characterizes the degree of flow unsteadiness by representing the
largest amplitude of the cross-plane velocity sum along the center-
line. Figure 2b shows that Q departs from zero at the same value of
VY that the flow becomes asymmetric. Thus, Figs. 2a and 2b demon-
strate that flow unsteadiness and asymmetry are intimately linked.
The loss of stability to time-periodic flow is evidence for a Hopf
bifurcation. The bifurcation is supercritical® since the amplitude
of the disturbance, characterized by Q, grows from zero as V is
increased past the Hopf point. The initial and final values of Q
are shown in Fig. 2¢c. A region in V exists where two-dimensional
flows with bubble-type breakdown evolve into three-dimensional,
unsteady flows with no reversed flow. Also, it is of interest to note
that the Hopf point and the appearance of reversed flow occur at
different values of V. Thus, loss of stability is not a consequence of
a gross structural change in the flowfield. Other examples in which
changes in flowfield topology are disassociated from hydrodynamic
bifurcations are given by Lopez.?

The observed increase in Q as the flow transitions from two-
to three-dimensional flow is correlated to a particular asymmet-
ric term in the govemning equations. Details of this analysis can
be found in Ref. 5. The correlation requires concepts put forth by
Brown and Lopez’ and Darmofal.'® Brown and Lopez’ established
a necessary condition between the production of negative azimuthal
vorticity 77 and the extent of axial flow deceleration. Consequently,
the authors anticipated that the minimum azimuthal vorticity for
the three-dimensional flow would be greater (less negative) than
that of the initial two-dimensional flow, since Q is greater in these
cases. This is indeed the case. At V = 1.5, before the Hopf bi-
furcation, the minimum values of 7 computed from both the two-
and three-dimensional models are virtually the same. However, just
beyond the Hopf point, the minimum 7 is significantly greater in
the three-dimensional flow. A numerical evaluation of asymmetric
terms in the azimuthal vorticity equation is then performed.® This
equation relates the total derivative of 7 to vorticity stretching and
tilting terms.'® Through this evaluation, it is found that the effect of
three-dimensionality on radial vorticity is the principle contributor
to the increase in 7. A region consisting of a positive net change in
radial vorticity exists that serves to attenuate the axial deceleration
process. o . B

Flowfield visualization is performed by calculating the numerical
equivalent of streaklines. Five material points are introduced into the
flowfield at the inflow boundary. The white point lies initially on the
tube centerline, whereas the grey scaled points lie on the y and z axes
at nondimensional distances of £0.1 from the centerline. The mate-
rial point positions are computed in time from the evolving velocity
field using a first-order-accurate Euler time integration.* Snapshots
of the time-asymptotic streaklines are shown in Fig. 3; the tube
geometry is omitted for clarity. Figure 3 shows the development
of three-dimensional flow as V is increased past the Hopf bifurca-
tion point. At V =2.3 (Fig. 3d), the material points deflect off-axis
in a well-defined helical-type structure, consistent with spiral-type
breakdown. Further discussion of the flow visualization can be found
in Ref. 5. :

Conclusions

Time integration of the three-dimensional, compressible Navier—
Stokes equations reveals that when the vortex strength is increased
past a critical value, the time-asymptotic flow changes from ax-
isymmetric and steady to asymmetric and time periodic, indicating
a supercritical Hopf bifurcation. The three-dimensional flows form
a solution branch that bifurcates from the path of two-dimensional
solutions at the bifurcation point. The authors’ interpretation of
this result is that the mechanism for the existence of a least one
family of three-dimensional solutions, which possess reversed flow
at sufficiently large values of vortex strength, is the loss of sta-
bility of the axisymmetric base flows. Minimum values of axial
velocity @ are observed to increase as flow asymmetries develop
just beyond the Hopf point. Furthermore, a small range of V ex-
ists where two-dimensional solutions exhibit vortex breakdown but
three-dimensional solutions do not. This attenuation of axial decel-
eration is found by the authors to be the result of a positive net
production of radial vorticity as flow asymmetries develop.
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The role of nonunique axisymmetric solutions in 3-D vortex breakdown
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The three-dimensional, compressible Navier—Stokes equations in primitive variables are solved
numerically to simulate vortex breakdown in a constricted tube. Time integration is performed with
an implicit Beam-Warming algorithm using fourth-order compact operators to discretize spatial
derivatives. Initial conditions are obtained by solving the steady, compressible, and axisymmetric
form of the Navier—Stokes equations with Newton’s method. The effects of three-dimensionality on
flows that are initially axisymmetric and stable to 2-D disturbances are examined. Stability of the
axisymmetric base flow is assessed through 3-D time integration. Axisymmetric solutions at a Mach
number of 0.3 and a Reynolds number of 1000 contain a region of nonuniqueness. Within this
region, 3-D time integration reveals only unique solutions, with nonunique axisymmetric initial
conditions converging to a unique solution that is steady and axisymmetric. Past the primary limit
point, which approximately identifies the appearance of critical flow (a flow that can support an
axisymmetric standing wave), the solutions bifurcate into 3-D time-periodic flows. Thus this
numerical study shows that the vortex strength associated with the loss of stability to 3-D
disturbances and that of the primary limit point are in close proximity. Additional numerical and
theoretical studies of 3-D swirling flows are needed to determine the impact of various parameters
on dynamic behavior. For example, it is possible that a different flow behavior, leading to a nearly
axisymmetric vortex breakdown state, may develop with other inlet profiles and tube geometries.

[S1070-6631(97)02804-3]

I. INTRODUCTION

Vortex breakdown is a hydrodynamic feature of swirling
flows in which the rotational vortex core stagnates, resulting
in a dramatic increase in the core size. Breakdown can occur
in tornadoes, in swirling flows inside tubes, in wing trailing
vortices, and in the vortical flows produced over delta wings
at high incidence.

Many numerical studies of vortex breakdown rely on the
assumption of a steady flow which is symmetric about the
vortex-core axis. This simplification allows researchers to
study the nearly axisymmetric bubble form of breakdown
found in tube experiments,! while avoiding the computa-
tional burden of solving 3-D flowfields. Some of the more
recent studles of axisymmetric breakdown are by Buntine
and Saffman Wang and Rusak34 Lopez,> Darmofal and
Murman,® and Beran and Culick,” hereafter denoted as BC.

Three-dimensional vortex breakdown computations have
also been reported. These computations have provided valu-
able information on the topological structure of the various
3-D breakdown forms. Most notably, calculations have been
performed for flows in unconfined domains®!® and over
delta wings.!! These works provide descriptions of the vari-
ous time-asyrptotic breakdown structures encountered, such
as the spiral and bubble forms. Spall and Gatski'® compute
other flow disturbances in addition to the spiral and bubble
breakdowns, as documented in the tube experiments of Faler
and Leibovich.!

An interesting feature of axisymmetric swirling flows is
the appearance of nonunique solutions for a fixed set of flow
parameters. Taasan'? and Leibovich and Kribus!'? computed
solutions to the Euler equations and found multiple solutions
stemming from bifurcations of columnar flows. BC further
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demonstrated that nonunique flows exist as solutions of the
Navier-Stokes equations. These results also indicate a con-
nection between the appearance of reversed flow and the
passage of a limit point. The stability of the BC solutions
were confirmed by Lopez® and Beran'* by solving the time-
dependent form of the 2-D governing equations. Lopez’ con-
cluded that the appearance of multiple solutions precludes
the possibility of predicting breakdown solely from knowl-
edge of the upstream flow. Rusak and Wang'® recently ap-
plied a global variational analysis to incompressible, inviscid
flows. They proved that both a columnar flow and a flow
with a large stagnation zone can coexist within a specified
range of vortex strength. These two solutions, which are
stable to small axisymmetric disturbances, are connected by
an unstable branch of solutions.

Nonuniqueness in 3-D swirling flows has also been re-
ported. The tube experiments of Sarpkaya'® show hysteresis
resulting from the existence of both the bubble and spiral
forms of breakdown under identical flow conditions. Similar
experiments by Faler and Leibovich! show spontaneous
switching between the spiral and bubble forms without hys-
teresis. Nonuniqueness in delta-wing flow computations is
discussed by Visbal.!!

The role of nonunique axisymmetric solutions in the de-
velopment of 3-D swirling flows is the subject of this work.
The authors have previously investigated the stability of
unique axisymmetric solutions to three-dimensional
disturbances.!” A unique feature of this work and the current
work is that solutions to the steady, axisymmetric governing
equations are used as initial conditions for time-integration
of the 3-D equations of motion. Thus transient solutions
which deviate away from the initial condition do so as a
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FIG. 1. A representative solution branch of axisymmetric solutions: stable
branch (solid lines); unstable branch (dashed line).

direct consequence of three-dimensional disturbances. Time-
asymptotic 3-D solutions are compared, under identical pa-
rameter settings, to the 2-D initial condition. In this way, the
relevancy of 2-D solutions is revealed. A cylindrical tube

. geometry is used, since it should naturally give rise to an
axisymmetric flow for a sufficiently low vortex strength.
This allows for a clean identification of the emerging vortex
core asymmetries and an understanding of their role in the
development of breakdown.

A characterization of nonunique solutions for viscous,
steady and axisymmetric flow is shown in Fig. 1, plotted in
terms of the (global) minimum axial velocity component,
Q, and the vortex strength, 2. The solid lines represent so-
lutions that are stable to axisymmetric disturbances, while
the dashed line represents unstable (u) solutions. As the vor-
tex strength is increased, a fold in the solution space occurs
along the upper stable branch (s*), resulting in a primary
limit point denoted as %7,. As the vortex strength is slightly
increased from %,, Q abruptly changes from positive to
negative, indicating the formation of bubble breakdown. For
flows with breakdown along the lower stable branch (s7),
decreasing the vortex strength results in generally larger (less
negative) values of Q until the secondary limit point, 77, is
encountered. The nonuniqueness of solution paths as the vor-
tex strength is increased and then decreased results in a hys-
teresis loop. Between 2 and Z,, nonunique axisymmetric
solutions exist. '

The primary limit point in an axisymmetric solution
space has been associated with the appearance of critical
flow—a flow state which supports standing axisymmetric
waves.'® A supercritical flow therefore refers to a flow which
can only support the downstream propagation of axisymmet-
ric waves, while subcritical flows can support either up-
stream or downstream wave propagation. BC found that for
sufficiently high Reynolds numbers, a parabolized version of
the axisymmetric governing equations, known as the quasi-
cylindrical (QC) equations, agree well with solutions of the
Navier—Stokes equations when the vortex strength is below
the primary limit point. However, the solutions fail to con-
verge as the vortex strength is increased towards the primary
limit point. The failure point of the parabolic QC equations is
believed by Hall' to be the approximate point at which criti-
cal flow develops. Thus, the works of BC and Hall'® suggest
that the flow transitions from supercritical flow to subcritical
flow at a vortex strength which is approximately equal to
7, . More recently, a noncolumnar flow criticality analysis
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has been reported by Wang and Rusak® for 2-D, inviscid
flow. Their results indicate that the critical vortex strength
for a finite length tube is a point of exchange of stability for
both columnar and noncolumnar solution branches, and that
this critical point corresponds® to a transcritical bifurcation
point of the inviscid solution branches. Furthermore, an ex-
tension of their work to flows with slight viscosity'® confirms
the existence of limit-point behavior found previously in nu-
merical solutions of the Navier—Stokes equations. The pri-
mary limit point forms at a slightly lower vortex strength
than the transcritical bifurcation point, with the spacing be-
tween the two determined largely by the magnitude of the
viscosity. The primary limit point is also expected'® to be a
point of exchange of stability to axisymmetric disturbances.

The computational approach of the current study is as
follows. First, a numerical algorithm provides the axisym-
metric initial condition for a specified vortex strength, 7,
given fixed values of the freestream Mach number, M, and
the Reynolds number. Re. The axisymmetric solution is then
interpolated onto a 3-D mesh using a fourth-order-accurate
cubic-spline scheme.?® Then, time-integration is carried out
by a 3-D time-integration algorithm. Initial conditions are
computed using the pseudo-arclength continuation (PAC)
model of BC modified for compressible flow. The PAC
model is capable of computing solution paths with folds,
providing a one-parameter (vortex strength) family of axi-
symmetric solutions. The nominal Mach number, M =0.3,
was chosen to provide ‘‘near incompressibility’” while
avoiding convergence problems associated with computing
at low Mach numbers. The 3-D time-integration model, re-
ferred to as the Time-Accurate Navier—Stokes (TANS)
model, is developed specifically for this work and is de-
scribed in the next section and in the Appendix.

II. NUMERICAL MODEL

The TANS model incorporates two unique features.
First, it uses a multiblock grid structure in the crossflow
plane. The multiblock structure allows for a nearly Cartesian
arrangement of nodes in the vicinity of the centerline, while
maintaining near orthogonality at the circular tube wall. This
is done for two reasons: (1) to allow for nearly constant grid
resolution near the centerline, where the vortex core may
migrate off-center during spiral breakdown; and (2) to avoid
an approximate numerical treatment at the tube centerline.
Second, the TANS model incorporates fourth-order compact
operators into an approximate factorization, Beam-Warming
solution procedure. The compact scheme discretizes explicit
spatial derivatives to fourth-order accuracy. Central-
difference discretizations are typically second-order accurate.
The net reduction in CPU time using the compact scheme
over central differencing, assuming fewer required nodes to
achieve similar levels of accuracy, is about 42%.

A. Tube geometry and grid

A Cartesian (x,y,z) and a cylindrical (E,r, #) coordinate

system are referenced such that positive x and z are aligned
with the tube centerline and pointed downstream. The y and
z directions lie in a crossplane normal to x and form a right-
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FIG. 2. Schematic of tube geometry in an arbitrary ) plane.

handed system. The Cartesian velocity components are de-
noted by V=(u,u,w)T. The r and @ directions are oriented
such that §=0 corresponds to r=+y. The axial, radial and

azimuthal velocity components are denoted by (w,u,0), re-
spectively.

The physical domain consists of a two-stage cylindrical
tube of circular cross-section and varying radius’ (Fig. 2).
The radius of the inlet station is denoted as Ry. The radius of
the first stage is given by

R(x)=Ry+ aRy[cos(2mx/x)—1] (0=sx<x;), (1)

where x; is the length of the first stage. The parameter «
controls the amount of tube contraction. The values of @ and
x, are fixed for this work at 0.05 and 6.18, respectively. The
second stage of the tube has a constant tube radius of R,.
The domain boundaries are denoted by sl, s2, and s3; corre-
sponding to the inflow, wall, and outflow boundaries, respec-
tively (Fig. 2). A generalized mapping transforms the physi-
cal coordinates (x,y,z) to the computational coordinates
(&,7m,8). Node indices in the (&,7,{) coordinates are de-
noted by (i,7,k), respectively. The number of nodes in the
(&, 1,{) coordinate directions are (nx,ny,nz), respectively.

A crossplane of the multiblock grid is shown in Fig. 3(a)
for ny=nz=41 . The grid consists of an inner block sur-
rounded by four outer blocks [Fig. 3(b)]. The outer blocks
are physically connected to each other but contain two edges
each that are considered as branch cuts in the computational
domain. These cuts are labeled 1-4 in Fig. 3(b). The 2-D
crossplane grid is generated with the GRIDGEN (Ref. 21) soft-
ware package. The 3-D grids are generated by scaling the
crossplane grid to the local tube radius. Clustering is allowed
in the x direction. The axial node locations are computed
from x;=x;-;+Ax;, where

(a) (®)

2r 40+
e 2 3
i K2
it ;
z0 : 4
Eﬁ
i - Kt
: 1 BE 4
2 L s L | . 0 : N
j2 40

0T n
FIG. 3. Crossplane grid: (a) physical, (b) computational.
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Ax;=Axo(1+ Blcos(2mx;— 1 /x3)—1])  (0<x=x,).

@
The parameters 8 and x, control the amount and axial extent
of clustering, respectively. For x=0 and x>x,, Ax;=Ax,.

B. Governing equations

The nondimensional vector form of the Navier—Stokes
equations is written below. The fluid density and pressure are
denoted by p and p, respectively, to define the solution vec-
tor UE(p,u,v,w,p)T. For algorithm efficiency, the equa-
tions are written in nonconservative form, limiting the
scheme to subsonic flow. The reference length is the inlet
radius of the vortex core. The reference velocity is the (uni-
form) inflow axial velocity and the reference pressure is
twice the reference dynamic pressure

A=1§&,, B=Lin+Ln,+I37,,
=10+ L, t 1,
Ve POlm  POun  POin 0
o v, 0 0 &,/p
=l 0o o V., 0 &.ip|,
0 0 0 Vo Sumlp
0 Yoim YPO2m VYPO3m Vn

where &y, is the Kronecker delta function for /,m=1,2,3 and
D=[0V-7,p{(y—1)®—V.q}]”. The nondimensional
shear stress tensor, 7, is defined assuming Stokes’ hypoth-
esis. ® and g represent the nondimensional viscous dissipa-
tion and heat flux vector, respectively. The auxiliary equa-
tions necessary to close the system of equations come from
the assumption of a perfect gas and Sutherland’s formula.

Axisymmetric conditions are specified at the inflow
boundary plane, s1. The inlet axial velocity, u=w,is chosen
to be uniform. Boundary conditions on v and w are obtained
by specifying appropriate profiles for v and u. The following
swirl velocity profile is characteristic of a Burger type vortex
and is appropriate for modeling the profiles obtained from a
swirl-vane apparatus:

5(0,/)=2r (1—e ")=Tr"},
where 7 is the vortex strength along sl and I' is the circu-
lation (divided by 277). The radial velocity, «, is assumed to
vanish to reflect a columnar flow state. A nonuniform inflow
density profile based on columnar flow is prescribed as a
Dirichlet condition. The profile is obtained by solving the
axisymmetric Navier—Stokes equations with the PAC algo-
rithm in a straight tube of short axial extent (L=0.01). In-
flow and outflow conditions are enforced that dictate colum-
nar flow. These conditions consist of fixed velocity
components (given above) with p,=p,=0. The resulting co-
lumnar solution for density is then used as a Dirichlet bound-
ary condition. A boundary condition on pressure is obtained
by solving the steady form of the axial momentum equation
along the inflow plane. The constriction in the first stage of
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the tube provides a favorable pressure gradient in the con-
verging section, while an adverse gradient forms aft of the
throat. Thus the constriction keeps the breakdown from oc-
curring near s, where columnar conditions are enforced. A
second inlet condition of zero azimuthal vorticity is briefly
considered, implying a vanishing axial derivative of radial
velocity for a uniform axial velocity profile. This condition
relaxes the columnar flow assumption, allowing for a com-
parison of results between two inflow conditions. The colum-
nar conditions are assumed unless otherwise noted. Surface
s2 is assumed to be a slip-wall, yielding an impermeability
boundary condition which relates the axial and radial veloci-
ties. Two other conditions, based on the compressible Ber-
noulli equation and the assumption of constant wall circula-
tion, lead to three Dirichlet conditions for the velocity
components at the wall. A fixed wall temperature is also
assumed. The wall pressure is determined by solving the
steady form of the y and z momentum equations. The y
momentum equation is solved in the 7 sweep and the z mo-
mentum equation is solved in the { sweep. Solution sweeps
are discussed in the Appendix. Outflow conditions at 53 are
chosen to reflect an assumed columnar flow state. Details of
the boundary condition formulation can be found in Ref. 20.

1l. RESULTS

The following results show that steady solutions occur
when the vortex strength is prescribed to be less than the
primary limit point. In particular, the specification of three
nonunique, axisymmetric initial conditions (at a vortex
strength between the primary and secondary limit points)
lead to three apparently identical time-asymptotic solutions
which are steady and axisymmetric. When the vortex
strength is prescribed to be greater than the primary limit
point, a time-periodic, three-dimensional solution develops.
The change in solution behavior is attributed to a Hopf bi-
furcation, which is found to lie in very close proximity to the
primary limit point.

A Reynolds number of 1000 is considered following the
results of BC, who show that nonunique 2-D solutions exist
for incompressible flow when Re>360. Consistent results
are found for M =0.3. Only unique axisymmetric solutions
were evident in previous results at Re= 250,'7 while a region
of nonunique solutions are found at Re=500 (Ref. 20) and
Re=1000. The vortex strength difference between primary
and secondary limit points is 0.0019 and 0.015 for
Re=500 and Re= 1000, respectively. BC report limit point
separations for M =0 of about 0.012 and 0.04 for Re= 500
and Re=1000, respectively, which are greater than those
found here for M =0.3. Thus compressibility effects appear
to diminish the region of nonuniqueness for a given Rey-
nolds number.

A. Grid requirements

Grid requirements for 2-D swirling flows have been dis-
cussed in previous work by BC, Lopez,” and Darmofal and
Murman.® Each of these works, along with the current study,
consider the constricted tube geometry defined by BC. More
specifically, the outer tube radius is governed by Eg. (1),
a=0.05 and Ry=2. Darmofal and Murman® also consider a
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second tube constriction near the outflow boundary. BC
demonstrate solution insensitivity by prescribing 27X 301
nodes for Ry=2 and L=30. Some sensitivity between tube
lengths L=30 and L=60 are noted at Re=2000, which is
higher than the Re= 1000 flows considered here. Similarly,
Lopez® used 31X 301 nodes for Ry=2 and L=30. Further
resolution of this grid to 61X 601 removed the appearance of
spatially developing ‘‘wiggles”” in contours of azimuthal
vorticity. However, Lopez® points out that the differences
between the 31X 301 solutions and the 61X 601 solutions are
not significant for Re<1000. In particular, plots of the
streamfunction and circulation for the two grids were de-
scribed as being virtually indistinguishable. BC also found
that reducing the number of axial nodes from 301 to 151
axial nodes had very little effect on the solution paths, except
that solution convergence suffered near the secondary limit
point. Darmofal and Murman® used 31X 151 nodes for
Ry=2 and L=30 to compute solutions at Re=1000.

Grid requirements are obviously greater for the current
3-D flows. However, using the fourth-order compact opera-
tors provides some relief by allowing similar accuracy levels
with fewer nodes. In this study a fine grid is constructed with
61X 61X 172 nodes for Ry=2 and L=30. This grid is
equivalent in crossplane resolution to the above grids. Grid
clustering in the axial direction is employed [Axy=0.206,
B=0.25, and x,=10; Eq. (2)] near the aft portion of the
throat such that the spacing at x=35 is one-half the spacing
achieved with equally spaced nodes. Thus the minimum grid
spacing in the breakdown region is comparable to the spac-
ing achieved with 301 equally spaced nodes. Using the
fourth-order compact operators further enhances accuracy.
Results in Ref. 20 show that this level of axial resolution is
adequate for Re=<1000. A time step of At=0.025 is used,
based on time-accuracy requirements identified in Ref. 20.

Varying the tube length from L=20 to L =130 results in
large differences in Q when the vortex strength is greater
than the primary limit point and when Re=1000. However, a
tube length of L=20 was found to be adequate for
Re=250,7 Re=500,% and for sufficiently low values of
vortex strength at Re= 1000. The observed sensitivity to tube
léngth prompted all runs computed for Re= 1000 to be run
with L=30. A further extension of the tube to L =40 shows
that only small deviations in Q@ occur from the L=30
solution.?

Values of tube radius other than Ry=2 are not consid-
ered in this study. BC found that paths of axisymmetric so-
lutions near the primary limit point are insensitive to tube
radius between Ry=2 and Ry=3 for Reynolds numbers
ranging from 250 to 2000. However, some sensitivity in the
bifurcation point locations of inviscid, axisymmetric solution
branches to the vortex core/tube radius ratio have been
reported.22 At vortex strengths much higher than the primary
limit point (2" as high as 2.3), 3-D flows were computedzo at
Re=250, without the anticipated formation of the bubble
form of breakdown.! Bubble breakdowns were instead only
observed as transient solutions, and ultimately transformed
to one of the asymmetric (spiral) modes. Evidence of the
transient bubble form suggests that the level of grid resolu-
tion is adequate to resolve the bubble breakdown. Instead,
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FIG. 4. Q versus time: < 7p (dashed), 7> 7, (solid). 7/p= 1.47435.

the authors speculate that the relatively small value of the
tube radius, Ry=2, is insufficient to produce a 3-D time-
asymptotic bubble form of breakdown at high vortex
strengths. The basis for this belief is the observation that
flowfield perturbations near the tube wall are larger for 3-D
solutions than for 2-D solutions. Thus, further computations
with the model should consider larger values of tube radius
to determine if the wall is preventing the occurrence of the
3-D bubble breakdown at large values of 7. It is of interest
to note that a small, but steady, axisymmetric bubble was
computed with the TANS model for a much lower Reynolds
number of 50.

B. Temporal behavior

Six axisymmetric initial conditions are time-integrated
with the TANS model for Re=1000. Three of these initial
conditions lie before the primary limit point at
7 ,=1.47435. These nonunique solutions lie on the upper
stable branch (27=1.47°%), the unstable branch
(Z7'=1.47"), and the lower stable branch (2'=1.47°"). The
temaining solutions are obtained at 7'=1.48, Z=1.5, and
Z°=1.6, which are all greater than 7/,

The temporal behavior of Q for =147 and 1.48 is
shown in Fig. 4. It is evident that the flow temporally evolves
from a negative to a positive value of Q for 7=147",
7'=147" and Z"=1.48, indicating the elimination of a re-
versed flow region. Furthermore, the three runs computed
before the primary limit point (dashed lines in Fig. 4) all
migrate to apparently identical solutions near the initial con-
dition at ’=1.47°". This behavior signifies the loss of 2-D
solution nonuniqueness in the presence of three-dimensional
disturbances. When % is increased slightly to 1.48, the tem-
poral behavior of Q departs from the behavior at
Z’=147" mnear t=70. The time-asymptotic value of O
(0.195 at t=1000) for =1.48 is lower than the time-
asymptotic values computed before the primary limit point at
%"=1.47, but is higher than the initial 2-D value. Thus, the
initially steady, axisymmetric bubble breakdown solution is
replaced by a flow without breakdown when three-
dimensionality is allowed.

The dynamics of the Z'=1.47°" case is examined to
beétter understand the evolution from axisymmetric bubble
breakdown to nearly columnar flow. The numerical equiva-
lent of streaklines are computed for this run to provide a
visual representation of the flowfield. Five ‘‘material points’’
are introduced into the flowfield at the inflow boundary. One
point (black) lies initially on the tube centerline, the others
(gray scaled) lie on the y and z axes at a fixed offset from the
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FIG. 5. Streaklines showing transition from axisymmetric bubble break-
down to nearly columnar flow: 7'=1.47°", Re=1000.

centerline. Five new material points are periodically intro-
duced into the flowfield where the first five points were ini-
tialized, thereby simulating a numerical equivalent of die-
injection in experiments. Material point positions are
computed in time from the evolving velocity field using a
first-order-accurate Euler time integration.?’ Initial streak-
lines (#=0) are computed from the initially steady flowfield.
When the material points are initially offset from the center-
line a nondimensional distance of 0.1, the resulting streak-
lines convect over the bubble breakdown region and down- .
stream. However, if the initial offset is 0.01, material points
pass over the bubble and then enter the bubble region from
the rear. Both offsets are considered to allow material point
visualizations inside and outside the bubble.

Examination of the streaklines at discrete points in time
reveal that the initially axisymmetric bubble breakdown
erupts temporarily into a 3-D spiral flow, followed by a de-
cay of three-dimensionality to the nearly columnar solution
along the s™ branch. Furthermore, the instability associated
with the appearance of 3-D flow appears greatest just aft of
the breakdown bubble.

The emergence and decay of 3-D flow is illustrated in
Fig. 5. At t=0, the bubble is clearly evident by streaklines
which pass around the bubble region and convect down-
stream. The bubble structure remains intact through z=25.
However, as discussed later, it is found that asymmetries
have developed both within and aft of the bubble region by
t=25 and have significantly altered the flow inside the
bubble. Thus the material points shown in Fig. 5 do not
provide a total picture of the emerging 3-D flow. By =40,
the aft portion of the bubble is replaced with a loosely orga-
nized spiral arrangement of material points. The material
points upstream and slightly downstream of the nose of the
bubble remain nearly undisturbed. By ¢=50, a spiral struc-
ture replaces the bubble entirely, and then slowly transitions
over time to nearly columnar flow. By t=60, the original
location of the nose of the bubble is replaced with nearly
columnar flow. The axial extent of the nearly columnar flow
increases downstream with time as evidenced by the streak-
lines at +=100. The flow becomes steady and nearly colum-
nar everywhere by ¢=400.
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FIG. 6. Centerline values of the y velocity component, v, versus x for
various times, f: 7’=1.47°", Re= 1000.

The emergence of 3-D flow aft of the bubble is illus-
trated in Fig. 6, where the centerline value of the y velocity
component, v, is plotted versus x at various times. Note that
nonzero centerline values of v imply 3-D flow. The location
of the breakdown bubble is marked in the figure by two
vertical dashed lines. It is found that below ¢=35, small
asymmetries, v~¢7(107°), exist slightly upstream and
downstream of the bubble region. As ¢ is increased, the
asymmetries upstream of the bubble grow to only
4(10™%). Within and especially aft of the bubble region,
however, asymmetric flow develops quickly. By r=25,
asymmetric flow extends from the front portion of the bubble
region to as far downstream as x=20. This asymmetric flow
develops before any obvious signs of their existence appears
in the streaklines of Fig. S.
~ The streaklines shown in Fig. 7 convect upstream into
the interior of the bubble, and help visualize the impact of
the emerging asymmetric flow. Between t=0 and t=5 the
bubble structure remains basically unchanged from the initial
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FIG. 7. Streaklines showing flow reversal into the breakdown bubble and
subsequent affect of emerging flow asymmetries: 7°=1.47"", Re=1000.
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condition, with all material points entering the bubble from
the rear and spiraling upstream. By =15, two changes to the
aft portion of the bubble are apparent. First, the spiraling
material points within the bubble between. approximately
x=8 and x=9 are not as tightly wrapped as before. This is
found to be associated with the elimination of reversed flow
near the rear of the bubble. Second, the rear of the bubble
appears to have shifted slightly downstream. By =20, re-
versed flow is lost in the downstream half of the bubble
interior, and the ejection of material points out of the bubble
interior is evident. Furthermore, three-dimensional flow is
now clearly evident from the material points. By =25, the
region of reversed flow along the centerline is contained to
the region between the nose of the bubble and x=7.

The dynamic behavior illustrated above in Figs. 5-7
demonstrates the instability of the initial axisymmetric flow
along the s~ branch to 3-D disturbances. Furthermore, the
instability is strongest just aft of the breakdown bubble (Fig.
6).

The explanation for the subsequent decay of the 3-D
disturbances, however, is not clear. A possible explanation is
as follows. A large increase in Q is observed between
t=40 and r~50 (Fig. 4), and is found to coincide with the
largest growth of flow asymmetries. The increase in 0 may
be a direct result of the emerging 3-D flow, as was found in
previous work by the authors.!” As a result of increasing
Q, the flow may reach a point in time where the underlying
axisymmetric base flow is no longer unstable to 3-D distur-
bances. [It is of interest to note that flow asymmetries begin
to diminish at a point in time (t=~47) when Q switches sign
from negative to positive.] This would then cause the subse-
quent decay of the spiral formation in Fig. 5 to axisymmetric
flow. However, the strongest attracting axisymmetric solu-
tion is now the nearly columnar solution along the s*
branch. In summary, solutions along s~ are unstable to 3-D
disturbances. The emerging asymmetries are associated with
an increase in Q (i.e., away from the s~ branch) until a
sufficiently high value of O is reached. At this value of @, it
is postulated that the base flow can no longer support asym-
metric disturbances. The solution would then be attracted to
the nearly columnar, s*, branch.

A similar scenario may exist for a flow computed along
the s~ branch past the primary limit point. In this case, how-
ever, there is no attracting s* solution available, providing
the scenario for a new branch of solutions to form.

C. Evidence for a Hopf bifurcation near the primary
limit point

The time-asymptotic behavior of the flows computed
near the primary limit point is discussed here and compared
to the initial flow state. The time-asymptotic behavior of the
flows computed before the primary limit point Z'<%7”, is
steady and axisymmetric. Flow steadiness is confirmed by
monitoring the global maximum value of the solution incre-
ment, A"U, as time increases. All of the runs computed be-
fore the primary limit point converge to maximum values of
A"U near 1X 1078 at r=400, which is considered an accept-
able level of convergence. The time-asymptotic solutions are
found to be axisymmetric by computing the value of H,
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FIG. 8. Periodic behavior of flow computed at 7"=1.5 and Re=1000: (a)
v, (solid) and w, (dashed) versus time, (b) phase plot of v, for t=370 to
t=400.

which characterizes the degree of flow asymmetry and is

defined as the global maximum absolute value of dv/dé.
H is found to be very close to zero when the vortex strength
is below % p. For example, for "= 1.47°%, the time-
asymptotic value of H is 8.4X 1073, Furthermore, it is found
that 89% of this value® is due to interpolation errors in com-
puting H. The remaining 11% is believed to be attributable
to the asymmetric arrangement of the grid nodes, and not to
the physical presence of asymmetric flow.

The time-asymptotic behavior past the primary limit
point is three-dimensional and time-periodic. Values of H for
time-asymptotic flows computed past the primary limit point
are much greater than the near-zero value of H computed at
Z7'=147°"". For example, H=1.293X10"! for the time-
asymptotic flow at 2= 1.48. The time-periodic nature of the
flow at is observed by plotting time histories of flow quanti-
ties at a fixed location in space. In particular, v, and w, are
defined as the crossplane velocity components at a fixed cen-
terline location of x="7. Plots of v, and w, are shown in Fig.
8(a), with the corresponding phase plot of v, shown in Fig.
8(b) (8r=0.8). The periodic nature of v, is evident in the
figure. The phase plot of w; is not shown, owing to the
similarity between v and w, .- The axial velocity component
u; is found to be steady.

Contours of the axial velocity component, u, are shown
in Fig. 9 to illustrate the change in flow behavior. Contours
of u are shown in Fig. 9(a) for 27=1.47°*. One-half of the
x =y plane is omitted due to flow symmetry about the x axis.
The initial, steady axisymmetric flow is shown with dashed
contour lines, while the time-asymptotic, steady solution of
the TANS model is shown with solid contour lines. The
agreement between the two solutions is excellent, demon-
strating that the initial flow is stable to the small 3-D distur-
bances introduced in the numerical solution procedure. Fig.
9(b) shows the initial axisymmetric solution for #'=1.5,
which is past the primary limit point. The strong bubble
breakdown region is clearly evident from the negative region
of u (dashed lines) between x=35 and x=10. Time integra-
tion of this flowfield to r=400 results in the 3-D flowfield
depicted in Fig. 9(c). The bubble breakdown structure van-
ishes when 3-D flow is allowed, resulting in a solution with
no reversed flow. The three-dimensional nature of the flow is
found to be contained to the region aft of the tube constric-
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FIG. 9. Contours of the axial velocity component, u, in the x—y plane
(z=0) for Re= 1000 flows computed about 7}, =1.47435 (numbers in pa-
rentheses indicate the range of 15 evenly-spaced contour values): (a)
7= 147°* (0.44,1.4); initial axisymmetric solution (dashed), TANS time-
asymptotic solution (solid), (b) initial axisymmetric solution at Z'=1.5
(—0.12,1.4); u>0 (solid), u<0 (dashed), (c) 3-D TANS time-asymptotic
solution for 7= 1.5 at r=400 (0.1,1.4).

tion, with steady and axisymmetric flow maintained up-
stream.

Snapshots of the time-asymptotic streaklines for
7=147" and 7'=1.5 are shown in Fig. 10; the tube ge-
ometry is omitted for clarity. The flows have a base rotation
in the clockwise direction when viewed in the positive x
direction. At #’=1.47°" [Fig. 10(a)], before the Hopf point,
the vortex core swells at an axial location of about x=6. The
swelling of the core occurs symmetrically, and illustrates the
effect of axial flow deceleration. At #'=1.5 [Fig. 10(b)],
beyond the Hopf point, a spiral asymmetric disturbance oc-
curs upstream of the initial swelling at x=6 for
7'=147°*. The upstream movement of flow disturbances
with increasing 7, evident between Figs. 10(a) and 10(b), is
in agreement with experimental evidence.! The axial decel-
eration along with a time-periodic rotation of the disturbance
produces distorted rings of material points, which subse-
quently spiral and convect downstream. The direction of ro-
tation is clockwise (looking downstream); consistent with the

(@

(b)

FIG. 10. Particle traces showing development of three-dimensionality be-
yond the primary limit point at 77,=1.47435: (a) #’=147°*, (b) Z=1.5.
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base vortical flow. Solutions at higher vortex strengths reveal
more coherent spiral disturbances, similar to previous results
at Re=250."7

The loss of stability of steady flow to time-periodic flow
as vortex strength is increased is evidence for a Hopf bifur-
cation. The nature of the bifurcation is summarized in Fig.
11. In Fig. 11(a), the initial and time-asymptotic values of
Q are depicted. The initial conditions are denoted with
square symbols while time-asymptotic values are time-
averaged and denoted with diamond symbols. A distinct
change in solution character occurs when Z” is increased
slightly from 1.47 to 1.48. All three time-asymptotic solu-
tions at Z'=1.47 are steady and axisymmetric, while at
7°=1.48 the time-asymptotic flowfield is time-periodic and
three-dimensional. In between the vortex strengths of 1.47
and 1.48 lies the primary limit point at #,=1.47435. Thus
the maximum difference in ¢ between the location of the
Hopf bifurcation and the primary limit point is 5.65X 1073,
The diamond symbols denote the emerging path of 3-D so-
lutions which bifurcate from the branch of steady, axisym-
metric solutions, The authors’ interpretation of this result is
that the mechanism for the existence of at least one family of
3-D solutions, which possess reversed flow at sufficiently
large values of vortex strength, is the loss of stability of the
axisymmetric base flows. Reversed flow is not observed
along the 3-D solution branch until the vortex strength is
increased from 7= 1.5 to "= 1.6. After the primary limit
point, ’=1.48, the time-asymptotic value of Q (diamond
symbol) is significantly larger than the initial value of Q
(square symbol) for the same value of 7. This observation is
consistent with previous results!’” where the increase in Q is
correlated to the positive net production of both radial and
azimuthal vorticity components as flow asymmetries emerge.

The nature of the Hopf bifurcation is further illustrated
by plotting the parameters H and £ in Fig. 11(b). Q is
defined as the maximum and minimum centerline values of
the sum v+ w found over a sufficiently long time interval in
the time-asymptotic flow. Thus € is zero for axisymmetric
flow and nonzero for 3-D flow. The fact that () steadily
increases from zero near 27, is evidence for the supercritical
type of Hopf bifurcation.” Furthermore, it is evident that
H sharply departs from zero for flows computed past the
primary limit point. Values of H,  and Q for Re=1000 are
summarized in Table I.

The solid line in Fig. 11(b) is a quadratic polynomial fit
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TABLE 1. Summary of time-asymptotic parameter values for Re=1000.

7 0 (2-D)/(3-D) 0 H
147* +0.369/+0.371 ~0.0001/0.0001 0.0084
147" +0.056/+0.364 ~0.0001/0.0002 0.0084
147" ~0.098/+0.369 ~0.0003/0.0004 0.0084
1.48 ~0.110/+0.195 ~0.1550/0.1550 0.1293
150 ~0.128/+0.124 ~0.2513/0.2513 0.2491
1.60 ~0.159/-0.032 ~0.5080/0.5080 0.6653

of Q) for 77=1.48, 1.5, and 1.6. The curve shows the qua-
dratic nature of the data, and is useful in estimating the Hopf
bifurcation point, 77. The computed curve is
7°=0.5147Q%~0.0013 + 1.468, which yields 77, =1.468.
This value is 2X 1073 lower in vortex strength than the
%"= 1.47 case where steady flow was found. Thus the Hopf
point identified through the curve fit is slightly lower in vor-
tex strength than the bracket containing the Hopf point iden-
tified through time integration. The linear term in the poly-
nomial is nearly zero, which implies that { departs from
zero at the bifurcation point with nearly infinite slope. This is
in good agreement with Hopf bifurcation theory,23 which
dictates that the bifurcation parameter, 7, is symmetric with
respect to a characteristic amplitude of the bifurcated flow,
ie., Z(Q)=2(—Q). This symmetry condition holds when
the linear term is identically zero.

The stability of 2-D flows computed with the noncolum-
nar (zero azimuthal vorticity) inflow condition is briefly in-
vestigated for Re=1000. The primary limit point for this
case is higher (27,=1.59048) than the primary limit point
for the columnar inflow condition (77,=1.47435). It is also
found that the region of nonuniqueness for this case has in-
creased to 0.048, compared to 0.015 for the columnar initial
conditions. Four time-integration runs are performed. Two
runs are performed at 27=1.585'" and #"=1.585°", which
are below the primary limit point. The other two runs are at
2=1.595 and 2= 1.605, which are above the primary limit
point. The temporal behavior of the two runs computed be-
fore the primary limit point is similar to the behavior ob-
served for the columnar inflow conditions. That is, both
flows time-asymptote to steady, axisymmetric conditions.
Past the primary limit point, the "= 1.595 case is also found
to approach a steady, axisymmetric flow. It is noted, how-
ever, that much longer run times (z=1000) are required to
approach time-asymptotic conditions for this case. At
7= 1.603, the initial breakdown bubble transitions to a 3-D,
time-periodic flow with no breakdown, analogous with the
results for the columnar inflow condition. Thus the results
indicate that changing inflow conditions delays the instability
to 3-D disturbances to a point slightly past the primary limit
point. The difference in vortex strength between the primary
limit point and the 77=1.605 case is 1.452X 1072, Vortex
strengths between these two cases were not investigated.

As previously discussed in Section I, the location of the
primary limit point in an axisymmetric solution space has
been associated with the appearance of critical flow. The
results of this study may add further insight into the role of
the primary limit point. The results show that the Hopf and

J. C. Tromp and P. S. Beran 999




primary limit point locations differ by a maximum of
5.65X1073 in 7, Also, for the case of noncolumnar inflow
conditions, the Hopf point and the primary limit point loca-
tions differ by a maximum of 1.452X 102, Thus, the results
imply a possible connection between the loss of stability to
3-D disturbances, the location of the primary limit point, and
the appearance of critical flow.

The results of this work do not imply that the Hopf bi-
furcation and the location of the primary limit point are ex-
actly coincident. The vortex strengths chosen here are not
sufficiently close to the limit point to make this determina-
tion. Also, subtle differences between the PAC and TANS
models, such as the introduction of artificial damping, are
unavoidable. This makes it very difficult to precisely predict
the onset of the instability. Furthermore, time-integration
proves to be quite demanding on computational resources
when computing solutions near the Hopf bifurcation. This is
primarily due to the lengthy times required for the instability
to develop, with this time increasing dramatically the closer
one computes to the actual Hopf point. Instead, a contribu-
tion of this work is that a Hopf bifurcation point is bracketed
to lie in close proximity to the primary limit point—a con-
tribution previously unreported in the literature. It is antici-
pated that a more direct means of computing the Hopf point
is in order for determining if their exists a definite correspon-
dence between the flow instability and the primary limit
point. Such solvers have recently been developed for 2-D
flows.*

IV. SUMMARY AND DISCUSSION

Axisymmetric solutions computed in this study at
Re=1000 contain a region of nonuniqueness, resulting in
primary and secondary limit points. These axisymmetric so-
lutions are treated as initial conditions to a 3-D time-
integration algorithm. When the vortex strength is prescribed
to be less than that at the primary limit point, the resulting
time-asymptotic solutions are found to be steady and axi-
symmetric. In particular, when three nonunique initial con-
ditions are time-integrated, all three initial conditions time-
asymptote to the solution corresponding to the initial
condition of the upper stable branch. The transition between
the initial bubble breakdown solution of the lower stable
branch to the nearly columnar upper stable branch solution is
investigated. It is found that the bubble breakdown flow
transforms temporarily to a 3-D spiral form, which ulti-
mately decays to nearly columnar flow. When the vortex
strength is prescribed to be greater than the primary limit
point, the resulting time-asymptotic solutions are found to be
time-periodic and three-dimensional. Thus a Hopf bifurca-
tion is found to occur in very close proximity to the primary
limit point. Modifying the inflow boundary condition to relax
the columnar flow assumption results in the Hopf point lying
at a vortex strength that is slightly greater than the primary
limit point. :

Previous results'? by the authors for Re=250 also show
evidence for the Hopf bifurcation, which occurs in this case
near 7°=1.53. However, only unique axisymmetric solutions
exist at this lower Reynolds number. The lack of limit points
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preclude any obvious correlation between the loss of stability
and the character of the axisymmetric solution branch. Two
other similarities in the solution behavior are noted at the
two Reynolds numbers. First, as 7" is increased, the loss of
stability occurs before reversed flow is present. Second, for
vortex strengths near the instability, the time-asymptotic val-
ues of Q for 3-D flows are higher than for the initial 2-D
flow.

The role of the primary limit point is further defined in
this study. Previous (axisymmetric) work had established a
correspondence between the primary limit point and a
change in flow criticality, implying that flow criticality sig-
nals the emergence of axisymmetric breakdown. This study
indicates that the primary limit point is in close proximity to
the vortex strength where stability to 3-D disturbances is
lost, with further increases in vortex strength ultimately re-
sulting in vortex breakdown. This result may allow the dis-
tinct, time-periodic fluctuations associated with the Hopf bi-
furcation to be used to signal the onset of breakdown.
However, a precise statement concerning the connection be-
tween the Hopf bifurcation and the primary limit point is not
established in this work. This is due to the practical limits of
bracketing a bifurcation point through time integration, and
possibly due to subtle differences in which artificial damping
is employed within the two numerical models.

Finally, it is of interest to contrast the role of the primary
limit point for 3-D flows to the role associated with axisym-
metric solutions. For axisymmetric flows, the primary limit
point is associated with values of Q which are positive.
However, a slight increase in % above the.primary limit
point brings about large differences in solution behavior, due
to the sudden drop of solutions from the upper to lower
stable branch. Thus, a slight increase in Z from %, » in 2-D
flows results in a dramatic change in solution character—
from flows with no reversed flow to flows with reversed
flow. Results in this study indicate that 3-D flows do not
undergo this large change in flow structure as the primary
limit point is crossed. Instead, flows computed just past the
primary limit point are void of reversed flow. In 3-D flows,
therefore, the primary limit point is not associated with
breakdown, as it is generally perceived in axisymmetric
flows. For example, Fig. 11(a) shows that the primary limit
point is at W = 1.47435, whereas reversed flow is not
achieved until approximately Z'=1.6. In general, the effect
of three-dimensionality is the delay of the formation of re-
versed flow, requiring generally larger values of vortex
strength to achieve breakdown than in axisymmetric flows.

Further work is needed to establish a precise relationship
between the Hopf bifurcation and the primary limit point. In
particular, a theoretical study of 2-D and 3-D vortical flows
in tubes would help confirm and may better define the nu-
merically determined relationship found in this work. In ad-
dition, more studies are needed to determine the effects of
inlet flow profiles and tube geometry on the dynamic and
time-asymptotic behavior.
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APPENDIX: SOLUTION PROCEDURE

The solution procedure is a Beam-Warming,? approxi-
mate factorization scheme. The equations are solved in a
nonconservative, implicit manner using three-point-
backward time integration. Temporal accuracy is second or-
der for the inviscid terms and first order for the viscous
terms, owing to the explicit treatment of the viscous terms. A
fourth-order spatially accurate compact,26 or Padé, operator
is employed to approximate derivatives. The compact ap-
proximation for the derivative of a scalar, u, with respect to
x, for example, is given by

1 ol (A
uy= 2Ax % + ( X) s
where

St=t;y—Ui—y, Fe=1+ (e 2u+u;1)/6.

% denotes a general operator while the subscript refers to the
coordinate direction.

The general, approximately factored scheme in delta
form, where A"U=U"*!—-U" is given by

L YBAU=R, (A1)
where
Z=[I+(At13) A+ (8155 — w;8°¢],
Y=[1+(At13) B N(8,17) — ;8 ,),
E=[1+(AtB)E" (8,157 — ;8]
B=t1+12—13A1/3,
t1=(2/3)(AtD"+0.5A""1U),

02=—wAt(+ 8+ 8 )U",

— an+1 __é;‘-i) . x+l(__5_77 r,1+1(£{_)) n
[3——(./5 (.75 + 7 Z, + 77 7, U,

The .74, B, and & matrices at the unknown time level,
n+ 1, are obtained through extrapolation. This is required for
the nonconservative scheme to achieve second-order tempo-
ral accuracy. To insure steady-state consistency,” the ex-
plicit damping coefficient, w, , is defined above such that the
explicit damping term is multiplied by Az. The implicit
damping coefficient, w;, is set to zero for this work.

The solution is updated following &, 77, and { sweeps:

['_715[+(At/3).,‘/;"+lag]AnUl :,75(r1 +13)+12,
[_‘/’n[—}-(At/3).ﬁ"+157,]ANU2:‘y”(AnUl)’
[+ (AB) T 5 JAY =T (A U).
Urtl=yt+ AU,
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F¢ is multiplied through Eq. (A1) before solving the ¢
sweep, and acts on all of the right-hand side terms except the
damping term, 2. The damping term is excluded for consis-
tency in comparing results to the central-difference PAC
scheme. The traditional method of sweeping in the 7 and ¢
directions is modified”® to allow for the presence of a multi-
block grid structure. Spatial derivatives in 3, grid metrics,
and viscous terms, D, are computed implicitly at time-level
n to fourth-order accuracy. This is accomplished in an effi-
cient manner using a lower/upper decomposition technique,
since the resulting set of equations represent a constant, tridi-
agonal matrix-inversion problem. At boundaries sl, s2 and
s3, second-order accurate, three-point forward/backward dif-
ferences are used. Derivative terms normal to the grid cuts
are approximated with fourth-order central differences.

The numerical procedure was partially checked by solv-
ing for a uniform freestream with Dirichlet (no correction)
boundary conditions at s1, s2 and s3. The resulting temporal
corrections, A"U, were found to be machine zero every-
where for 100 iterations over a wide range of time steps. It is
of interest to note that employing a fourth-order accurate
boundary stencil®® along the physical boundaries s1, s2 and
s3 of the form

ugyt3ugs=(1/6)(—17u, +9(uyt+uz)—uy)

resulted in freestream conservation efrors.

Validation of the TANS model® proceeded along two
lines. First, a variety of model problems were solved, includ-
ing the incompressible and compressible flows over a flat
plate, unsteady Couette flow and unsteady heat conduction.
The model output and the known solutions matched to a high
degree of accuracy in each case. Second, the TANS and PAC
models were cross-validated by comparing computed solu-
tions obtained under flow conditions which lead to steady
and axisymmetric flow. The resulting solutions were found
to agree to a high degree of accuracy.
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Force and moment experiments were conducted for a 65-deg delta wing undergoing ramp-and-hold
and harmonic rolling motions. This extensive set of experiments isolated critical-state responses. Motions
between critical states and motions crossing critical states were included. Roll-angle amplitude and the
roll rate were varied. The total angle of attack and Mach number were held constant at 30 deg and 0.3,
respectively. The amount of time required for the rolling moment coefficient to reach its steady-state value
after the end of a ramp was quantified for numerous ramp motions. This relaxation time was a signifi-
cantly large value for many of the motions, especially when the 5-deg critical state was crossed. Motion
history effects were determined for motions that crossed critical states. The effect of roll rate on critical-

state transients proved to be insignificant.

Nomenclature
trailing-edge wing span
rolling moment/qSb
Cl - C[ atle
root chord
mean aerodynamic chord
reduced frequency, wb/2U.,
freestream dynamic pressure
model planform area
time
nondimensional timé, 2U,.t/b
freestream velocity
total angle of attack, body-axis inclination with
respect to Ul
body-axis roll angle = ¢,
first derivative of ¢ with respect to time
second derivative of ¢ with respect to time
nondimensional roll rate, ¢(b/2U.,) ‘
shaft rotation angle at the base of the sting
shaft rotation angle at the center of the force balance
circular frequency, rad/s

QQE"T L e T
8 &
3

LI T I | T 1 T IO IO

5 5eroe
o

&

Howwnuwnun

g

Introduction

N expansion of the flight envelope has been and remains
a very important goal for designers of high-performance
air vehicles. Such high-performance aircraft are required to fly
faster and at higher angles of attack. Because of these demands
they often employ highly swept wing surfaces. When flying at
higher angles of attack, controllability has become a large
problem for these aircraft. Intense changes in the flowfield are
encountered that result in dramatic nonlinearities in an air-
craft’s aerodynamic behavior. Under these conditions the aero-
dynamics are time- and motion-history-dependent; therefore,
conventional quasisteady modeling techniques are not ade-
quate.
This paper will discuss some implications of experimental
force and moment results for a 65-deg delta wing driven
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through roll maneuvers. This delta wing has been the focus of
an in-depth study over the past several years.'”"' Previous
analyses of the delta wing have shown severe nonlinear aero-
dynamic behavior and the aerodynamics have been shown to
be dependent on the precise motion history. As with other
highly swept planforms, vortex breakdown was found to be a
large contributor to the aerodynamic behavior of the 65-deg
delta wing. The axial progression of breakdown because of a
time-dependent variation in wing orientation was found to be
quite slow.,

The dynamic force and moment responses possessed large
time lags. Two possible causes for these time lags are 1) finite
response times caused primarily by the response of vortex
breakdown and 2) transients resulting from one or more crit-
ical-state encounters. A critical state exists when a disconti-
nuity in a static force or moment curve (or its derivative) oc-
curs and its crossing causes a discrete change in the
equilibrium response. Thus, time lags can result without en-
countering a critical state, but if a critical state is encountered,
there is an additional amount of time that is required for the
transition from one flow state to another. The time scales for
these critical-state transients had not been established. For
modeling purposes and possible simplifications, it would be
very useful to know if the effects from one or more critical-
state encounters can be neglected.

The force and moment experiments of this study were de-
signed to isolate the effects induced by critical-state encoun-
ters. Measurements were obtained for ramp-and-hold motions
and harmonic motions in roll. Comprehensive static and dy-
namic force and moment measurements were obtained. An ex-
amination of these results will be the focus of this paper, with
the goal being to increase the knowledge of how to better
model the transients induced from critical-state encounters.

Discussion

Experimental Equipment

The model used for the experiments was a 65-deg delta wing
with sharp leading and trailing edges. A schematic of the
model is shown in Fig. 1. Both the leading and trailing edges
were symmetrically beveled with an included angle normal to
the leading edge of 20 deg. The wing was constructed with a
multilayer graphite composite skin and a foam core, and the
fuselage was constructed purely of graphite composite. The
wing thickness-to-root-chord ratio is 1.53%.

The delta wing was mounted in the Subsonic Aerodynamic
Research Laboratory (SARL) 7 ft X 10 ft (2.1 m X 3.0 m)

ys
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Fig. 1 Delta wing model.
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Fig. 2 Roll rig apparatus in SARL wind tunnel.

wind tunnel via a roll rig. The wing was mounted on a five-
component strain gauge balance that was supported, by a drive
shaft, through a hollow sting. The dynamic roll rig, installed
in the SARL tunnel, is shown in Fig. 2. The apparatus, devel-
oped by the Canadian National Aeronautical Establishment
(NAE), was designed for large-amplitude and high-rate mo-
tions. A more detailed description of both the model and roll
rig design can be found in Ref. 12.

Data Acquisition and Reduction

The data presented here were obtained from a series of ex-
periments designed and conducted both by personnel from
Wright Laboratory and members of the Canadian Institute for
Aerospace Research (IAR) in 1994. The delta wing was driven
through both ramp-and-hold maneuvers and harmonic oscil-
lations in roll. During these experiments, digitally sampled
time histories of both the model motion and five-component
force and moment responses were obtained.

For all roll motions presented here the total angle of attack
o was fixed at 30 deg and the Mach number was 0.3. Data
were acquired with a constant sampling interval for a given
motion and for several (usually 20) cycles of the motion. Five-
component force and moment data were ensemble-averaged to
yield 1024 data points for one cycle. The five components
produced were normal force, pitching moment, side force,
yawing moment, and rolling moment. The shaft rotation angle
at the base of the sting was also measured throughout the same
sampling time. For each motion data were acquired both with
the tunnel operating at the desired testing speed and with the
wind off.

Ramp Motions

The constant ramp roll rate was varied from 0.25 rad/s (14
deg/s) through 7 rad/s (400 deg/s) for the various ramp mo-
tions. A ramp-up cycle consists of a hold at ¢, the ramp-
up, a 0.5-s hold at ¢,,,, and a return to ¢,,. The data, how-
ever, were acquired only for a small amount of time before
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the ramp up starts, through the ramp up, and for the 0.5-s hold
at ¢ after the end of the ramp. The part of the cycle spent
returning to ¢, and an amount of time at Pumia before starting
the next cycle are not included in the data acquisition sampling
period. Data were acquired over a sufficient number of cycles
so that the ensemble-averaged data did not change with the
acquisition of data over an additional cycle.

The first step taken in the data reduction process was to
convert the raw output voltages from the force balance to non-
dimensional force and moment coefficients, based on the
model geometry. The remaining part of the data reduction was
much more involved. For many applications, a simple sub-
traction of the wind-off tare data from the wind-on data would
be an adequate method of removing the inertial effects. How-
ever, for the ramp motions at which high angular accelerations
were commanded at the beginning and end of the ramp, it was
determined that such a subtraction was not appropriate.

For a given ramp-and-hold motion, the difference in the roll
angle between the wind-on and wind-off data was very small.
Slight differences between the measured and commanded roll
angles, however, resulted in severely different accelerations
commanded by the servo-system. Because of this, significant
oscillations were present in both the wind-on and wind-off
rolling moment coefficients, particularly following the com-
manded accelerations. The oscillations between the wind-on
and wind-off runs were not always in-phase because the small
roll-angle errors are influenced by the airloads acting on the
model. Therefore, a subtraction of the two rolling-moment
time histories often increased the amplitude of the oscillations.

The inertial effects were determined by an alternate method
and they were subtracted from the wind-on force and moment
coefficients, yielding a more accurate result, with significantly
smaller oscillations. Knowing the roll angle, the rolling mo-
ment contribution caused just by the inertia can be calculated
and subtracted from the wind-on rolling moment resulting
from both the inertial and aerodynamic effects.

To determine the inertial effects the roll motion history ¢,(f)
from the tare runs was used to calculate (D). b,(1) was cal-
culated by taking a second-order central difference in time.
The initial and final values of ¢,(f) were calculated using a
second-order one-sided difference. Because of the noise pro-
duced from differentiating twice, frequencies in the roll accel-
eration time histories above 100 Hz were numerically filtered
out. Knowing ¢,(¢) and C,(r) for a tare run, an estimate of the
inertia I could be determined assuming a simple one-degree-
of-freedom system in roll where

Ci(O) = (IgSH)(1) + K ¢))

K is the value of C, before and after the ramp when (}5,(!) =0.
This value was near zero, but is included to account for any
small biases in the signal. Using a least-squares linear curve
fit, values of both I and K were calculated, since g from the
wind-on tests S and b are all known. Also, the correlation
coefficient could be calculated to assess the validity of the
linear correlation assumption. Correlation coefficients from
0.60 to 0.85 were obtained. Plots of C vs ¢, showed noticeable
loops around the linear curve fit. Since the rotation angle was
sensed at the end of the actuator shaft, it was desired to try to
determine the shaft rotation angle at the same location where
the rolling moment was measured, at the balance center. It was
thought that a difference in the rotation angle between the base
of the shaft and the balance center, because of torsional de-
flections of the drive shaft, might be the cause of the observed
loops.

To determine the shaft rotation angle at the balance center
¢- the entire shaft from its base to the center of the balance
was modeled as a cylinder of uniform torsional stiffness. This
system was modeled as a second-order system in terms of the
difference in shaft rotation angle A, where Ad = ¢, — ¢,
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Therefore, the system was described by the following equa-
tion:

Ad(®) + 2{w,Ad() + wPAP() =0 )

¢ and w, are the damping ratio and natural frequency of the
drive shaft torsional degree of freedom, respectively. A¢(s)
was calculated using the indicial form of the Duhamel integral:

Ap() = o) — () = A(NH(0) + j AG —Dd(mdr  (3)

where A(f) = —e"[cos wt + (n/w)sin wt] with n = ~{w, and
w = w,V1 — % Since ¢,(r) was known, ¢,(¢) was then de-
termined. ¢,(¢) was found to be essentially identical to ¢,(2).

Fixed values of { and w, were found by trying to minimize
the difference between the measured C;(f) and the C(¥) cal-
culated using ¢.(f) in Eq. (1). Previous work' had shown,
however, that the damping force was not proportional to ¢,
but rather it was essentially a constant force opposing the di-
rection of motion. Therefore, { was set to be inversely related
to | ¢, | to provide a constant damping force. This provided a
good match between the measured and calculated values of
C,(t) as desired.

Using the values of I/¢gSb and K determined by including
the tare values of ¢,(¢) in Eq. (1), the necessary information
was found to subtract the inertial effects from the wind-on
rolling moment data. For ramp motions, the values of C,(z)
discussed in the remainder of this paper were calculated by
taking the wind-on measured values of C(f) and subtracting
C,(t) calculated from Eq. (1), using the wind-on measured val-
ues for ¢,(r). :

Harmonic Motions

The frequency was varied from 1.1 through 11 Hz for the
harmonic motions. For these motions one sampling cycle is
one complete harmonic oscillation. In these cases, force and
moment data were obtained by subtracting the wind-off data
from the wind-on data. Obvious oscillations were present in
the resulting force and moment time histories. To better
smooth the data, a fast Fourier transform was performed and
a limited number of harmonics were kept. The number of har-
monics retained varied with forcing frequency as shown in
Table 1. Determining the number of harmonics to retain was
established by choosing a number small enough to provide
sufficient smoothing while retaining the overall shape of the
time histories. :

Observations

Previous findings' revealed the existence of a critical state
for this delta wing at approximately ¢ = 5 deg. This can be
seen in the static rolling moment coefficient vs ¢, shown in
Fig. 3. In the region of ¢ = 5 deg a definite discontinuity in
the rolling moment coefficient is observed. A discontinuity in

Table 1 Number of harmonics retained for harmonic
motions of varying forcing frequency

Resulting
Forcing Number of cutoff
frequency, Reduced harmonics frequency,
Hz frequency kept Hz
1.1 0.010 8 8.8
22 0.021 8 17.6
33 0.031 -7 23.1
4.4 0.042 6 26.4
5.5 0.052 5 27.5
7.7 0.073 4 30.8
8.8 0.084 4 35.2
11 0.105 3 33.0

the pitching moment coefficient was also observed around this
angle. These discontinuities indicate the existence of a sub-
critical bifurcation. Critical states around 8 and 11.3 deg were
also proposed in previous work. The 8-deg critical state is
likely to be a Hopf bifurcation because of the large rms fluc-
tuations.? The increase in scatter for ~8 deg < ¢ < ~12 deg,
shown in Fig. 3, indicates that time-averaging failed to average
out low-frequency fluctuations. The 11.3-deg critical state ap-
pears to be a supercritical bifurcation. Also, the unsteadiness
in C, is greatly reduced for ¢ > ~12 deg.

Ramp Motions

The experiments were designed to isolate the effects of crit-
ical-state encounters from viscous time lags caused primarily
by the slow response of vortex breakdown position. Four dif-
ferent ramp motions are shown in Fig. 4. These ramp motions
either stay below the critical state around ¢ = 5 deg, cross the
critical state, or stay above the critical state.

Figure S illustrates C,(¢) for a ramp motion in roll from 7 to
4 deg at —1 rad/s as compared to the quasisteady C,(f) over
this range in roll angle. This figure reveals an obvious differ-
ence between the measured and quasisteady response. Also, it
is interesting that at ramp onset the dynamic response is in-
creasing, while the reverse is true of the quasisteady behavior.
Note that C,(¢) does not approach the quasisteady value until
long after the ramp has ended. The amount of time required
for the rolling moment coefficient after the end of a ramp (¢
=~ () to reach its quasisteady value was quantified for many
motions.

It was desired to isolate the transient effects resulting from
the presence of the leading-edge vortices. Previous findings"
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revealed that the vortical component of the rolling moment
had a net destabilizing effect for roll-angle variations. The
presence of vortex breakdown and its relatively slow response
is considered to be the dominant cause of time lags observed
for dynamic maneuvers (not counting critical-state effects).
The potential flow component of the rolling moment reacts at
the freestream convection speed, which for these rates can be
considered virtually instantaneous. Therefore, the potential
flow part of the rolling moment coefficient was subtracted
from the total rolling moment coefficient. The potential con-
tribution was calculated using QUADPAN, a panel code de-
veloped by Lockheed—California Company.*

Figure 6 shows the vortical contribution to the rolling mo- '

ment coefficient, the total rolling moment minus the potential
contribution. This figure illustrates how relaxation times were
calculated. The first, second, and third rolling moment coeffi-
cients correspond to ramp motions from —4 deg to 4, 6, and
7 deg, respectively, each for a roll rate of 1 rad/s, as shown in
Fig. 4. For each of these three ramp motions the vortical roll-
ing moment responses were time-shifted so that 2 nondimen-
sional time of 0.0 corresponded to the end of each of the ramp
motions. Also, the second vortical rolling moment coefficient
(AC),, shown in Fig. 6, has the response of the first motion
subtracted. Likewise, the third response had the response from
the second motion subtracted.
The relaxation times that were quantified, as shown in Fig.
-6, were actually the time after the end of the ramp until the
rolling moment coefficient reached 63% of its value at the end
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of the ramp-and-hold. This value of 63% was chosen because,
for an exponential decaying function C,(f), where AC(t) =
G, [ e "], with C(t — ®) = C,.and C(t = a) =
0.632C, .. a must have the same units as ¢ and it is called the
time constant. The relaxation times, according to this defini-
tion, are indicated by vertical lines. It should be noted, as ev-
idenced by Fig. 6, that these calculations of the relaxation
times are conservative because they did not take the time-
averaged static values (denoted by solid symbols) to be the
necessary equilibrium value. The second ramp motion, which
crosses the critical state, illustrates that even at the end of the
sampling period the vortical rolling moment contribution has
not yet reached the static value.

These (63%) relaxation times were quantlﬁed for several
ramp motions with positive and negative roll rates about var-
ious critical states. The nondimensional relaxation times %,
as well as the AC, . (from the end of the ramp to the assumed
steady-state value) are included in Table 2.

Table 2 reveals the relaxation time constant about the 5-deg
critical state (¢, =~ 70) to be quite large. The 8-deg critical
state yielded a lower value (t%. = 50). Calculations of the
relaxation time constants for the 11.3-deg critical state, al-
though not included in the table, found 1&e = 10. The AC,
values used to calculate the relaxation time constants for the
11.3-deg critical state, however, were very small. Therefore,
these relaxation time constants were less meaningful. This
might be expected from Fig. 3, which shows that for roll-angle
variations around 11.3 deg, the difference in the static rolling-
moment coefficient is small.

The relaxation time constants calculated for ramp motions
that did not involve crossing a critical state yielded values of
¥, =~ 30. For these motions, where vortex breakdown existed
over the wing, the time constant reflects the relaxation time
resulting from the response of vortex breakdown.

The range of ramp motions examined allowed history effects
across critical states to be assessed. As shown in Fig. 4, ramp
motions were conducted for ¢ between —4 and 6 deg, between
—4 and 7 deg, and between 6 and 7 deg. The rolling-moment
data obtained for the ramp from 6 to 7 deg were compared to
the rolling moment data for the ramp from —4 to 7 deg with
the rolling-moment data for the ramp from —4 to 6 deg sub-
tracted. The result of this subtraction is denoted A = 6 to 7 deg.
This comparison is shown in Fig. 7a. Note again that the po-
tential flow contribution to the rolling moment was subtracted,
leaving just the vortical contribution. This plot reveals no sig-
nificant history effects on the rolling moment coefficient in the
¢ range from 6 to 7 deg after crossing the 5-deg critical state.
Table 2 also illustrates that the time constants (t%, =~ 30) de-
termined for A = 6 to 7 deg were approximately equal to the
time constant determined for a direct ramp motion from 6 to 7
deg.

The same type of procedure was used to examine the history
effect on the subsequent response after passing through the 8-
deg critical state. Figure 7b illustrates the comparison between
the vortical rolling moment coefficient for a ramp from 9 to
10 deg with a ramp from 6 to 10 deg, subtracting the history
of the ramp from 6 to 9 deg. This comparison illustrates a
noticeable difference between the two results. Therefore, in-
cluding the flow history from 6 to 9 deg, which crosses the 8-
deg critical state, produced a distinctly different transient re-
sponse over the 9- to 10-deg range. The causes for and
conditions under which critical-state history effects become
important are not yet understood. This will be a subject of
future investigations.

The effect of roll rate on the critical-state transients was
investigated using the data obtained with different roll rates
over the same roll-angle range. Figure 8, which contains the
vortical contribution to the rolling moment coefficient for three
different roll rates, reveals that the roll rate has no significant
effect on the transients for the 5-deg critical state. Again, Table
2 illustrates that the time constants for each roll rate were all
approximately t%, =~ 70.
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Table 2 Relaxation times to 63% of steady-state values for various ramp motions
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Critical Rate Precritical state Crossing critical state Postcritical state
state, rad/s,
deg ND Up/down t3a AC, [ 5.9 AC, tEa AC,
5 —4 to 4 deg —4 to 6 deg —4 to 7 deg
A =4to6deg’ A=61to7deg
1 (0.003) Up 36 0.010 62 0.014 30 0.006
4(0.012) Up 33 0.014 68 0.014 40 0.007
7 (0.020) Up 33 0.014 73 0.006 47 0.007
7 to 6 deg 7 to 4 deg 7 to —4 deg
A =61to04deg A =410 —4deg
1 (0.003) Down 24 —0.006 61 —0.014 78 -0.010
8 6 to 7 deg 6 to 9 deg 6 to 10 deg
A =71t09deg A =9to 10 deg
1(0.003) Up 33 0.006 42 0.009 5 0.004
10 to 9 deg 10 to 7 deg "10 to 6 deg
A =91to7deg A=7to6deg
1 (0.003) Down ‘14 -0.002 53 ~0.008 34 ~0.005
A = 4 to 6 deg denotes moment response for ¢ from —4 to 4 deg was subtracted from moment response for ¢ from —4 to 6 deg.
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Fig. 8 Roll-rate effect on the transient C; response through the
End of Ramp Motion 5-deg critical state.

Vortical Effect on Rolling Moment Coeff.

V == 9° to 10° with flow history from 6° included
-0.002 - —— 9°t0 10°
L ] i 1 1
0.004 0 50 100 150 200
b) Nondimensional Time, t*

Fig. 7 Response of the vortical contribution to C, with and with-
out the prior motion history through the a) 5- and b) 8-deg critical
state included (¢dnp = 0.003).

Harmonic Motions

The rolling-moment responses for numerous harmonic roll
oscillations were obtained. Figure 9 contains rolling-moment-
coefficient responses for 5-deg amplitude harmonic oscillations
in roll. These oscillations, which vary in frequency from 1.1
to 11 Hz (0.010 =< k = 0.105), are centered about ¢ = 3 deg.
The solid symbols in Fig. 9 show the static results and the
dashed curve shows the static potential flow contribution to
C,. These C, loops run in a counterclockwise sense, therefore,
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at a given ¢, C; on the upstroke is less than C, on the down-
stroke.

For the oscillation of lowest frequency, & = 0.010, C, at-
tempts to follow the curvature of the static data. As the fre-
quency is increased, however, the deviation from the static data
becomes more apparent. For all but the lowest frequency the
rolling moment response no longer even remotely resembles
the curvature of the static data. For each oscillation shown in
Fig. 9, C, for ¢, and ¢, Were obtained. A line (dash-double-
dot) is shown connecting these two values for each oscillation.
Even at the lowest frequency, C, values at the roll angle limits
(¢ =~ 0) do not reach their static values. With increasing fre-
quency the slope of the line connecting the roll angle limits
moves closer to the slope of the potential flow contribution. It
would be expected that for a harmonic oscillation of very large
frequency, the flow would respond only to the virtually in-
stantaneously reacting flow component. Furthermore, the am-
plitude of the rolling-moment response loops decreases as fre-
quency increases. Figure 9 also illustrates that on the upstroke,
in the range of the offset angle, ¢ = 3 deg, the value of C, is
virtually independent of roll rate. However, on the downstroke,
after crossing the 5-deg critical state, the roll rate has a sig-
nificant effect on the rolling-moment coefficient.

Using the nonlinear indicial response model (NIR) and the
superposition integral (presented in detail in previous pa-
pers'™'®), the classic Taylor-series expansion for the aerody-
namic response to a motion input can be derived.'” When these
results are specialized to the case of forced harmonic motion,
relationships are established between specific stability deriva-
tives (both linear and nonlinear) and the variation of the aero-
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Fig. 9 C, response to 5-deg-amplitude harmonic motions cen-
tered at ¢ = 3 deg.

dynamic responses at harmonics of the forcing frequency. That
is, for the steady-state response to a harmonic motion input; e.g.,

@) = Py + A cos(ke) 4

the rolling moment response can be shown to be of the form
C.,,.=Ci, + F,cos(kt) + F,cos(2kt) + Fycos(3kt) + - - -

+G, sin(kr) + G, sin(2kt) + G, sin(3ke) + -+ %)

where each of the in-phase coefficients F, is a summation of
the contributions f,; from particular stability parameters that
are designated by the subscript j. Therefore,

Jonax

Fn = Zﬁvl
F=1

Similarly, out-of-phase terms G, also consist of contributions
8..;- The individual contributions can be factored into the form

Jui =ﬂ.j(¢o. A¢)[a2k2 + ak* + -]

(6)
8nj = &ni(Bo, ADK[b, + bsk® + bsk* + -]

Note that the frequency effect appears as a power series in k.
Also, the coefficients of these terms, (a,, b,), correspond to the
relevant stability derivative. Furthermore, the higher-order
terms (in k) arise from repeated differentiation of the motion
parameters.'” Differentiation of sin(nkr) gives nk cos(nkt). That
is, the series proceeds in the order b,(nk) + a,(nk)* + ---
Thus, if

k > 1/(na,/b,)

the series diverges.

It must also be noted that this analysis is valid under the
following conditions:

1) The motion is analytic (which is true for forced oscillation
tests).

2) The motion does not cross a critical state.

3) Time constants for the indicial response transients are less
than 1/nk, where nk is the frequency of the affected harmonic.

The convergence properties of the series representation
(when applied to harmonic motion) can be used to provide an
independent check of indicial response time scales. From
ramp-and-hold motion data (see Table 2), indicial response
time constants of about 30 are expected in the roll angle range

Table 3 Regression results

Harmonic,
j Parameter n na,/b, ke
1 Linear, ¢ 1 28.4 0.035
2 ¢ 1 19.5 0.051
3 b 1 16.0 0.063
4 b 2 24.8 0.040
- 0020
E [
S 3 k=0.020
£ oo1sf .
g [ e Regression Model
-~ ——u—— Experiment
£ ootof e
£
=
o 0.005
= [
© [
T o.000f
L
g
E. -0.005 |-
e
[l 1 1 1 1
.4 2 0 2 4
a) Roll Angle [deg]
0.020 r
s 4 k= 0.040
€ 0015}
S Regression Model
(& [ ——a—— Experiment
€ 0010} e
[
£ [
5
= 0.005F
o
£ [
& 0000f
K]
2 0.005
&
=) [
) 1 H 1 1 1
-4 2 0 2 4
b) Roll Angle [deg]

Fig. 10 C, _for harmonic oscillations centered at ¢ = 0 deg for
k = a) 0.02 and b) 0.04.

between the critical states at =5 deg. Thus, for harmonic mo-
tions in this range, the series approximation is expected to
converge for reduced frequencies below about 0.033. There-
fore, harmonic motions (centered about O-deg roll angle and
with amplitudes of 2, 3, and 4 deg) at the two lowest frequen-
cies, k = 0.02 and 0.04, were analyzed. A stepwise regression
analysis’ was used to identify the most significant terms in the
series expansion. The correlation coefficient for the regression
was 0.886, and comparisons between experimental and pre-
dicted C,,  are shown in Figs. 10a and 10b. Although the data
trends with frequency and amplitude are well captured by the
regression model, the overall agreement may be compromised
by the fact that k = 0.04 slightly exceeds the expected range
of applicability.

Four separate contributions were identified; i.e., jn.x = 4. The
results are summarized in Table 3. As shown, the key contrib-
utors are the first and fourth parameters, both showing diver-
gence for k = 0.04. Thus, these results also show that appli-
cation of the procedure to data taken at k = 0.04 is marginal.
Moreover, the regression analysis confirms that indicial re-
sponse time constants, as determined from ramp and hold ma-
neuvers, are correct within approximately 10%. It also suggests

S0
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that some of the nonlinear contributions are somewhat faster,
contradicting the assumption that the decaying loads are simple
exponentials.

Conclusions

Experimental force and moment measurements were made
for both harmonic and ramp-and-hold motions in roll. These
experiments were designed to isolate critical-state effects. For
the first time, evidence showing significant critical-state tran-
sients was presented. Several conclusions regarding these crit-
ical-state transients are as follows. )

1) Severe time lags (¢%, =~ 30) existed for motions during
which a critical state was not crossed (for —4 deg < ¢ < 4
deg). Therefore, stability derivatives are not valid for reduced
frequencies, k = 0.033. .

2) An independent assessment of the longest time-scales in
the | | < 5-deg range based on relationships between stability
derivatives and indicial response characteristics confirmed
t¥. = 30. Also, the good agreement between independent ex-
periments also supports the validity of nonlinear indicial re-
sponse theory as applied to these data.

3) Critical-state encounters often have a severe effect on the
transient rolling moment behavior.

4) The 5-deg critical state yielded the longest transient ef-
fects. A relaxation time, t%, =~ 70, was found when crossing
this critical state from either above or below. Crossing the
range including the 5-deg critical state, however, did rot yield
a noticeable history effect on the subsequent response for ¢
from 6 to 7 deg.

5) The 8-deg critical state yielded slightly smaller relaxation
times 1%, =~ 50 compared to the 5-deg critical state. However,
including the flow history response for a crossing of the 8-deg
critical state yielded a noticeable history effect on the subse-
quent response for ¢ from 9 to 10 deg.

6) The analysis of the 11.3-deg critical state was not con-
clusive because the overall change in rolling moment coeffi-
cient from the end of the ramp to its steady-state value was
very small.

7) Responses to roll motions at the examined angle of attack
and roll angles exhibit three distinct time scales (potential, vor-
tical, and critical-state transients). These time scales must be
accounted for to achieve accurate aerodynamic models.
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